
1 / 41

The Density Operator and Redfield Theory

Gert van der Zwan

November 28, 2016



The Density Operator

The Density
Operator

❖ Postulate 1

❖ Equilibrium

❖ Postulate 2

❖ Postulate 3

❖ Postulate 4

❖ Reduction

❖ Example

❖ Dipole Operator

❖ Dipole Interaction

❖ The Dimer and
Some Numbers

❖ Numerical
Calculations for the
Dimer

❖ The New States

❖ Reduction

Redfield Theory

Exercises and
Problems

2 / 41



The Density
Operator

❖ Postulate 1

❖ Equilibrium

❖ Postulate 2

❖ Postulate 3

❖ Postulate 4

❖ Reduction

❖ Example

❖ Dipole Operator

❖ Dipole Interaction

❖ The Dimer and
Some Numbers

❖ Numerical
Calculations for the
Dimer

❖ The New States

❖ Reduction

Redfield Theory

Exercises and
Problems

3 / 41

What exactly qualifies some physical systems to

play the role of ‘measurer’? Was the wavefunction

of the world waiting to jump for thousands of

millions of years until a single–celled living creature

appeared? Or did it have to wait a little longer, for

some better qualified system . . . with a PhD?

J.S. Bell, Against Measurement
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● Operator Expectation Value in state |ψ〉 and expansion in

orthonormal basis

〈A〉 = 〈ψ|A |ψ〉 =
∑

n,m

a∗man 〈m|A |n〉 =
∑

n,m

a∗manAmn (1)

● (Ensemble) Average

〈A〉 =
∑

n,m

a∗manAmn ≡
∑

n,m

ρnmAmn =
∑

n

(ρA)nn = Tr[ρA]

(2)

● Density Operator, (or density matrix)

ρnm = a∗man (3)
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● Schrödinger Equation:

i~
∂ |ψ〉

∂t
= H |ψ(t)〉 (4)

● Apply to |ψ(t)〉 〈ψ(t)|:

∂ρ(t)

∂t
= −

i

~
H |ψ(t)〉 〈ψ(t)|+

i

~
|ψ(t)〉 〈ψ(t)|H =

i

~
[ρ,H]

(5)

Quantum Liouville Equation

∂ρ(t)

∂t
=
i

~
[ρ,H]
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Associated to any isolated physical system us a com-

plex vector space with inner product, that is a Hilbert

space, known as the state space of the system. The

system is completely described by its density operator

which is a positive operator ρ with trace one, acting on

the state space of the system. If a system is in the state

ρi with probability pi, then the density operator of the

system is
∑

i piρi.

● Trace: Sum of the diagonal elements.

● Positive operator: Operator with non–negative

eigenvalues
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● Quantum system with states |ψi〉 and probabilities pi: the

collection {pi, |ψi〉} is called an ensemble of pure states.

2LS or qubit with states |0〉 = |↑〉 and |1〉 = |↓〉

● Pure states are for instance ρ0 = |0〉 〈0| and ρ1 = |1〉 〈1|.
In matrixform:

ρ0 =

(

1 0
0 0

)

and ρ1 =

(

0 0
0 1

)

(6)

● For pure states: Tr[ρ2] = 1. In other cases this trace is

smaller than 1.
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Equilibrium Density Operator:

ρeq =
e−βH

Q
with Q = Tr

[

e−βH
]

(7)

● Diagonal elements of ρ are called populations.

● Off–diagonal elements of ρ are called coherences.

● Unperturbed 2LS Hamiltonian: H0 = ǫ |1〉 〈1|
● Transition dipole operator: µ̂ = µ [|0〉 〈1|+ |1〉 〈0|]
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The evolution of a closed quantum system is described

by a Unitary transformation That is, the state ρ at time

t1 is related to the state ρ′ of the system at time t2 by a

unitary operator U which depends only on the times t1
and t2,

ρ′ = UρU †

For Hamiltonian systems:

U = e−
i
~
H(t2−t1) (8)
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Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state

space of the system being measured. The index m refers to
the measurement outcomes that may occur in the experiment.
If the state of the quantum system is ρ immediately before the
measurement then the probability that result m occors is given

by
p(m) = Tr[MmρM

†
m
] (9)

and the state of the system after measurement is

MmρM
†
m

Tr[MmρM
†
m]

(10)

The measurement operators satisfy the completeness relation

∑

m

M†
m
Mm = I (11)
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The state space of a composite physical system is the ten-

sor product of the state spaces of the component physi-

cal systems. Moreover, if we have systems numbered 1

through n, and system i is prepared in state ρi then the

joint state of the total system is ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn.

Two Coupled 2LS

● States are |i〉 ⊗ |j〉 ≡ |ik〉 ≡ |2i+ j〉. For instance

|0〉 ⊗ |1〉 = |1〉.
● Inverse transformation: |k〉 = |k/2〉 ⊗ |k%2〉, using integer

division and the mod operator. For instance

|3〉 = |11〉 = |1〉 ⊗ |1〉.
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When we solve a quantum–mechanical problem, what we

really do is divide the universe into two parts — the system

in which we are interested and the rest of the universe. We

then usually act as if the system in which we are interested

comprised the entire universe. To motivate the use of den-

sity matrices, let us see what happens when we include the

part of the universe outside the system.

R.P. Feynman, Statistical Mechanics, p. 39

The reduced density matrix is obtained by taking the trace

over the parts of the universe you don’t want to deal with

explicitly.

σ = Tr2ρ (12)
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1. Basic States are |0〉 = |00〉, |1〉 = |01〉, |2〉 = |10〉, and |3〉 = |11〉
2. Unperturbed Hamiltonian is H = H1 ⊗ 12 + 11 ⊗H2

3. In matrix form the Hamiltonian in the Basic States basis is therefore

H =









0 0 0 0
0 ǫ2 0 0
0 0 ǫ1 0
0 0 0 ǫ1 + ǫ2









(13)

Unperturbed System:
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Next to the Hamiltonian we also need the Dipole Operator

The dipole operator is more complex, since there are permanent dipole

moments and transition dipole moments. And the dipole moments are

vectors.

Most general case:

~̂µ = ~µ0 |0〉 〈0|+ ~µ1 |1〉 〈1|+ ~µ01 |0〉 〈1|+ ~µ10 |1〉 〈0| (14)

● The state dipole moments ~µ0 and ~µ1 need to be real.

● The transition dipole moments satisfy ~µ10 = ~µ∗
01.

● Since bacteriochlorophylls are almost symmetric, state dipole

moments are very small.

● Transition dipole moments must satisfy ~µ10 = ~µ∗
01.

● For most applications ~µ10 can be taken real. Exception: if the pigment

is itself optically active. Bacteriochlorophyll is not.

● The total number of dipole moments for an N–level system is N state

moments and 1

2
N(N − 1) independent transition moments.



Dipole Interaction

The Density
Operator

❖ Postulate 1

❖ Equilibrium

❖ Postulate 2

❖ Postulate 3

❖ Postulate 4

❖ Reduction

❖ Example

❖ Dipole Operator

❖ Dipole Interaction

❖ The Dimer and
Some Numbers

❖ Numerical
Calculations for the
Dimer

❖ The New States

❖ Reduction

Redfield Theory

Exercises and
Problems

15 / 41

1. Interaction between dipole operators:

V̂ij =
1

4πǫ0
~̂µi ·

(

1−
~rij~rij
r2ij

)

· ~̂µj (15)

2. ~̂µi is the dipole operator of pigment i.
3. ~rij is the vector connecting the positions of the pigment dipoles.

4. All dipole moments are supposed point dipoles.

Again the dipole operators need to be extended to the full M pigment NM

dimensional Hilbert space.
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1. To calculate 〈k| V̂ij |l〉 again expand the bra and the ket into pigment

states. All pigments other than i and j should be in the same state left

and right. The other elements are determined by the transitions of

pigments i and j.
2. For the two level dimer with only transition moments the dipole

interaction operator can be written:

V̂12 =









0 0 0 V
0 0 V 0
0 V 0 0
V 0 0 0









(16)

3. The magnitude of V is determined by the magnitude and orientation of

the dipole moments and the vector connecting them:

V =
1

4πǫ0
~µ1 ·

(

1− 3
~r12~r12
r2
12

)

· ~µ2 (17)

4. For µ = 1 D dipoles at a = 1 nm distance:

V0 =
µ2

4πǫ0a3
= 5.035 cm−1 (18)
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1. The full Hamiltonian for the two–level dimer is

H + V̂12 =









0 0 0 V
0 ǫ2 V 0
0 V ǫ1 0
V 0 0 ǫ1 + ǫ2









(19)

2. The Hamiltonian falls into two blocks: the single excited states Hs, and

the ground and double excited state Hd:

Hs =

(

ǫ2 V
V ǫ1

)

and Hd =

(

0 V
V ǫ1 + ǫ2

)

(20)

Both Hamiltonians are easily diagonalized.

3. Eigenvalues:

λs
± =

1

2

[

ǫ1 + ǫ2 ±
√

(ǫ1 − ǫ2)2 + 4V 2

]

(21)

λd
± =

1

2

[

ǫ1 + ǫ2 ±
√

(ǫ1 + ǫ2)2 + 4V 2

]

(22)
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● The distance between the single excited states is

∼ 2V (this is exact when ǫ1 = ǫ2). This is called

exciton splitting.

● The ground state is slightly lower than 0, the dou-

ble excited state slightly higher than ǫ1 + ǫ2.

● Lowering of the ground state and raising the dou-

ble excited state is much smaller than the exciton

splitting because V/(ǫ1 + ǫ2) ≪ 1. This is evi-

dently not true for V/(ǫ1 − ǫ2).
● The new states are labeled |ψk〉.
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● The dimer is in the ground state:

|ψ0〉 = c |0〉+ s |3〉 (23)

s and c are constants such that c2 + s2 = 1.

● The density matrix can be written

ρ =
3

∑

k,l=0

ρkl |k〉 〈l| (24)

● The reduced density matrix for system 1 can be written

σ = Tr2ρ =

(

ρ00 + ρ11 ρ02 + ρ13
ρ20 + ρ31 ρ22 + ρ33

)

(25)
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● For the dimer in the ground state the density matrix is:









c2 0 0 cs
0 0 0 0
0 0 0 0
cs 0 0 s2









(26)

● The reduced density matrix σ is:

σ =

(

c2 0
0 s2

)

(27)

● The reduced density matrix does not correspond to a

pure state.
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Here we elucidate the role of coherence in determining

the efficiency of charge separation in the plant

photosystem II reaction center by comprehensively

combining experiment (two–dimensional delectronic

spectroscopy) and theory (standard Redfield theory).

E. Romero et al. preprint, (2012).

No spontaneous coherence arises in the standard

Bloch–Redfield description, showing the essential need

to go beyond such theories.

Chin et al, Nat. Phys., 8, (2013), 113
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● Theory designed for NMR relaxation, to give an

underpinning to the Bloch equations.

● Bloch equations: coherences go to zero, populations go

to equilibrium.

● In NMR relaxation is very slow (µs and longer).

● In NMR interaction between the spins and fluctuating

fields in the environment is very weak.

● In NMR spin relaxation is much slower than decay of

solvent correlation functions.
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∂ |ρ(t)〉〉

∂t
= −2πiL0 |ρ(t)〉〉 − 2πiLr(t) |ρ(t)〉〉 (28)

● |ρ〉〉 is a vector in Liouville Space, the Hilbert space of

density operators.

● For the 2SL |ρ〉〉 can be viewed as a vector with four

elements. For instance |0〉〉 ≡ |0〉 〈0|. I find it convenient

to use a similar bookkeeping device as for the dimer.

● L is a Liouville operator, defined as

L · · · = [H, · · · ] (29)

● The notation hides the complexity, but makes it easier to

do the formal steps.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford

University Press, 1995.
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● System Hamiltonian: H0.

● Random Hamiltonian :

Hr(t) =
∑

k

ÂkBk(t) (30)

with Âk a set of system operators, and Bk(t) a set of fluctuating

environment (‘bath’) functions.

● Properties of B:

✦ Averages are zero: 〈Bk(t)〉 = 0
✦ Correlation functions: 〈Bk(t)Bl(t+ τ)〉 = 〈Bk(0)Bl(τ)〉 ≡ Jkl(τ)

are rapidly decaying in time.

● Example for NMR: Â are the spin operators, B magnetic field

fluctiations.

● Example for electronic transitions: Â is the dipole operator, B
polarization fluctuations.
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1. Go to the interaction picture:

∂ |ρI(t)〉〉

∂t
= −2πiLr,I(t) |ρI(t)〉〉 (31)

with

|ρI(t)〉〉 = e2πiL0t |ρ(t)〉〉 Lr(t)e
−2πiL0t (32)

and

Lr,I(t) = e2πiL0tLr(t)e
−2πiL0t (33)

● If there is no interaction with the environment the

density operator in the interaction picture is a

constant.

● The Liouville operators do not commute.
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2. Formal solution in the interaction picture:

|ρI(t)〉〉 = |ρI(0)〉〉 − 2πi

∫ t

0
dτ Lr,I(τ) |ρI(τ)〉〉 (34)

● Not really a solution, rather writing a differential

equation as an equivalent integral equation.

● Nevertheless a commonly used technique: see for

instance the Feynman expansion for quantum

electrodynamics, or Mukamel’s expansion for the

derivation of non–linear optics.
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3. Expand to second order

|ρI(t)〉〉 = |ρI(0)〉〉 − 2πi

∫ t

0
dτ Lr,I(τ) |ρI(0)〉〉

− 4π2
∫ t

0
dτ

∫ τ

0
dτ ′ Lr,I(τ)Lr,I(τ

′) |ρI(0)〉〉+ · · ·

(35)

● Not much to argue with here.

● I have no idea if anyone ever proved that the series

expansion converges.
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4. Truncate after the second order term, and take the time

derivative

∂ |ρI(t)〉〉

∂t
= −2πiLr,I(t) |ρI(0)〉〉

− 4π2
∫ t

0
dτ Lr,I(t)Lr,I(τ) |ρI(0)〉〉 (36)

● This is some form of coarse graining I assume.

● I know of no other cases in which this procedure is

used.

● But we do get a new differential equation for |ρ〉〉.
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5. Average over the bath variables

∂ |ρI(t)〉〉

∂t
= −4π2

∫ t

0
dτ 〈Lr,I(t)Lr,I(τ)〉 |ρI(0)〉〉 (37)

● Average over the bath function is zero, only the

correlation functions remain.

6. Stationarity and Rapid decay of the bath functions

∂ |ρI(t)〉〉

∂t
= −4π2

∫ ∞

0
dτ 〈Lr,I(0)Lr,I(t− τ)〉 |ρI(0)〉〉

(38)

● This equation holds for times longer than bath

correlation decay times.
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7. Assume slow change of |ρI〉〉

∂ |ρI(t)〉〉

∂t
= −4π2

∫ ∞

0
dτ 〈Lr,I(0)Lr,I(t− τ)〉 |ρI(0)〉〉

(39)

● Since |ρI(t)〉〉 has not changed within the bath

correlation time, we can replace |ρI(0)〉〉 by |ρI(t)〉〉

8. Work out the correlation functions.

∂ραα′ (t)

∂t
= −2πi(α− α′)ραα′ (t)− 2π

∑

β,β′

[

δα′β′

∑

γ

J(β − γ)Aγβ ·Aαγ

− [J(α′ − β′) + J(β − α)]Aβ′α′ · Aαβ + δαβ

∑

γ

J(γ − β′)Aβ′γ · Aγα′

]

ρββ′ (t)

(40)
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● Eq. (40) is the so–called Redfield Equation, an equation

for the decay of a quantum system due to external

fluctuations for weak system–bath interaction.

● The functions J(ω) (note that α− β is an energy

difference, and hence a frequency) are the Fourier

transforms of the correlation functions J(t). They are

called Spectral Densities.

● The term in brackets contains both so–called secular

terms (shifts in energy) as well as damping terms:

coherences go to zero, and the population goes to the

ground state.

● The decay of the quantum system must be much slower

than the decay of bath correlations. This is not satisfied

for coherence decay in excitonically coupled systems.
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● The derivation is rather weird, and as far as I know has no

equivalents in other fields. There are other derivations

based on a projection operator formalism (see the

Argyres and Kelley paper

● Two worked out examples, spin 1/2 relaxation and

electronic relaxation are given in the document

Redfield.pdf

● The Redfield equation can be written as:

∂ |ρ〉〉

∂t
= −2πiL0 |ρ〉〉 − Γd |ρ〉〉 (41)

where Γd rrepresents the damping. This is a

superoperator, the action of which can be written as

[Γd |ρ〉〉]ij =
∑

k,l

[Γd]ij;klρkl (42)
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● There is no decay to the equilibrium density operator for

finite temperatures.

● If Γde
−βH0 = 0 it is argued that the Redfield equation also

holds for deviations from equilibrium.

● As far as I know there is no proof that any initial density

operator decays to equilibrium.

● There are a number of other theories with super

operators, see for instance the Kossakowski–Lindblad

equation (sometimes a bunch of other names are also

attached to this).
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1. Prove: If V is a finite–dimensional inner product space over C, and if

A : V → V satisfies 〈Av|v〉 ≥ 0 for all v ∈ V , then A is Hermitian.

2. Show that 1

2
[|0〉+ |1〉] [〈0|+ 〈1|] is a pure state.

3. Show that for qubits we can not find a state |ψ〉 such that ρ = |ψ〉 〈ψ| if

ρ =

(

1

2
0

0 1

2

)

.

4. Calculate the equilibrium density operator for a qubit in a static electric

field E: H = H0 − µE. Plot the ground state population as function of

E and T .

5. Plot the change in transition dipole moment as a function of E and T
for the density of the previous problem.

6. Calculate Q for the harmonic oscillator: H =
∑∞

n=0
(n+ 1

2
) |n〉 〈n|

7. Prove that there is no quantum mechanical state corresponding to

thermal equilibrium unless T = 0. In other words, prove that for finite

temperatures the equilibrium density operator is not pure.

8. Show that the properties (symmetry, Jacobi identity) of the commutator

and the Poisson bracket are the same.
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9. Prove that if for a combined system ρ = ρ1 ⊗ ρ2, the reduced density

matrix for system 1 is

σ = Tr2(ρ) = ρ1 (43)

10. Find explicit expressions for the constants c and s in Eq. (23).

11. Prove Eq. (25).

12. In a paper by Fuchs and Peres the following statement is made:

For example, there is no way to ascertain whether a single

system is in a pure state or is part of an entangled

composite system.

Do you agree?

13. Derive an equation of motion for the reduced density operator. Is this a

closed equation?

14. The derivation of ref. 6 is similar to that of Redfield theory. Why does

energy or momentum conservation not bother the Redfield approach

introduced here. Or does it?

C.A. Fuchs and A. Peres, Quantum Theory Needs No ‘Interpretation’,

Phys. Today, 53, (2000), 70–71.
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15. Show that with Eq.(8) ρ′ = UρU† solves the quantum Liouville

equation.

16. Papers on the role of coherence in photosynthesis are always based

on fs pulsed experiments. Do you think that the photosynthetic

complex is optimized for fs pulses? Is the difference between sunlight

and very intense fs laserpulses irrelevant?

17. Work out the relaxation of an electronic state due to electric field

fluctuations. The interaction Hamiltonian is

Hr = −~̂µ · ~E (44)

The electric field correlations can be written as

〈EiEj(t)〉 =
1

3
δij

〈

E2
〉

e−ζt (45)

so that

J(ω) =

〈

E2
〉

ζ − iω
(46)
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18. Show that from Eq. (28) it follows that not only Tr[ρ] is a constant, but

also Tr[ρ2]. In other words, a pure state remains a pure state under the

action of this equation. Hint: it is easier to use the commutator

representation of the Liouville operator for this proof.

19. For those who do not want to use commutators: first show that

Tr[ρ] = 〈〈1 | ρ〉〉, where |1〉〉 ≡
∑

k |k〉 〈k|.
20. At the end of the derivation of the Redfield equation, coherences

decay and populations decay to the ground state. So even when we

start with an impure state, the final state is pure. At which step of the

derivation is purity no longer a conserved quantity?

21. What does the result of the previous exercise tell you about the series

expansion of the integral form of the Liouville equation?
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