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Chapter 1

Introduction

1.1 Why nonequilibrium Green functions ?

In these lectures notes we discuss a method that is not very familiar to most quantum chemists, the
nonequilibrim Green function method. However, this is likely to change mainly due to new devel-
opments in nanoscience and the emerging field of ’molecular electronics’ in which single molecules
are used as conducting elements attached to electrodes. Description of such situations is a chal-
lenge for the theorist as it requires a description fast time-dependent processes in strong external
fields. The traditional quantum chemistry approaches that take into account electron correlations
in stationary sytems can not deal with these situations. This has been our main reason for looking
at the nonequilibrium Green function method, which has had important applications within solid
state, nuclear and plasma physics. However, due to its general nature it can equally deal with
molecular systems. Let us briefly describe its main features:

• The method has as its main ingredient the Green function, which is a function of two space-
time coordinates. From knowledge of this function one can calculate time-dependent expec-
tation values such as currents and densities, electron addition and removal energies and the
total energy of the system.

• In the absence of external fields the nonequilibrium Green function method reduces to the
equilibrium Green function method which has had imporatnt applications in quantum chem-
istry.

• Nonequilibrium Green functions can be applied to both extended and finite systems.

• The nonequilibrium Green function can handle strong external fields nonperturbatively. The
electron-electron interactions are taken into account by infinite summations.

• The approximations within the nonequilibrium Green function method can be chosen such
that macroscopic conservation laws as those of particle number, momentum and angular
momentum are automatically satisfied
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• Dissipative processes and memory effects in transport that occur due to electron-electron
interactions and coupling of electronic to nuclear vibrations can be clearly diagrammatically
analyzed

1.2 References

Many more things can be said about nonequilibrium Green functions. We therefore give a list of
references for further reading that we found useful ourselves:

Nonequilibrium Green functions

• P.Danielewicz, Quantum Theory of Nonequilibrium Processes, Annals of Physics, 152, 239,
(1984)

• H.Haug and A.-P.Jauho, Quantum Kinetics in Transport and Optics of Semi-conductors,
Springer-Verlag, Berlin (1998)

• L.P.Kadanoff and G.Baym,Quantum Statistical Mechanics: Green’s Function Methods in

Equilibrium and Nonequilibrium Problems, Addison-Wesley, (1989)

• M.Bonitz, Quantum Kinetic Theory, Teubner, Stuttgart-Leipzig, (1998)

• J.Rammer and H.Smith, Quantum field-theoretical methods in transport theory of metals,
Rev.Mod.Phys. 58, (1986)

• G.Stefanucci and C.-O.Almbladh, Time-dependent partition-free approach in resonant tun-

neling systems, Phys.Rev.B69, 195318 (2004)

Equilibrium Green function theory

• E.K.U.Gross, E.Runge and O.Heinonen, Many-Particle Theory, Adam-Hilger, Bristol (1991)

• A.L.Fetter and J.D.Walecka, Quantum Theory of Many-Particle Systems , Dover, (2003)

• L.Hedin and S.Lundqvist, Effects of electron-electron and electron-phonon interactions on the

one-electron states of solids, Solid State Physics 23, 1969

• J.Linderberg and Y.Öhrn, Propagators in Quantum Chemistry, Wiley-Interscience, (2004)
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Chapter 2

Second quantization

2.1 The Schrödinger equation

The goal of these lectures notes is to describe many-electron systems in general time-dependent
external fields. We will restrict ourselves to a nonrelativistic description and therefore we restict
ourselves to a discussion of the time-dependent Schrödinger equation (TDSE). The TDSE of n-
particles has the form

(i∂t − Ĥ(t))Ψ(x1, . . . ,xn, t) = 0 (2.1)

where xi = riσi denotes a space-spin variable of particle i. Now the Hamiltonian is invariant under
interchange of two particles. This implies that the eigenstates of the Hamiltonian can be chosen to
transform according to an irreducible representation of the permutation group. Experience teaches
us that only the one-dimensional representations, i.e. the completely symmetric or completely anti-
symmetric representations seem to occur in nature. If this assumption is made, a famous theorem
of Pauli states that the symmetric representation necessarily describes particles with integer spin
whereas the anti-symmetric representation necessarily describes particle with half-integer spin. The
proof is based on the properties of the representations of the Lorentz group and is therefore an
essentially relativistic result. It would go to far to describe this in detail and we simply use the
result. Since electrons are spin-half particles they are described by anti-symmetric wave functions:

Ψ(. . .xi . . .xj . . .) = −Ψ(. . .xj . . .xi . . .) (2.2)

In the following section we will introduce a formalism that will automatically take this symmetry
into account within the operators. This formalism is commonly knwon as second quantization and
is used in most advanced many-body approaches. Knowledge of this formalism is therefore essential
to understand a great number of research papers.
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2.2 Fock space and field operators

2.2.1 Definitions

In this section we will define a space, the so-called Fock space, of quantum states that consist of
linear combinations of states with different number of particles. There are several reasons for doing
this.

• This will provide us with a natural framework to discuss processes that change the number
of particles, such as in ionization.

• It will allow us to consider temperature dependent systems and calculate expectation values
within the grand canonical ensemble in which the particle number is not fixed.

• By dealing with creation and annihilation operators in Fock space the anti-symmetry prop-
erties of the wavefunctions are automatically built into the anti-commutation relations of the
operators and we never have to deal with the wavefunctions themselves.

Let {|Ψj,N 〉} be a complete set of states in a N -particle Hilbert space. Then Fock space is defined
as the set of linear combinations of the form

|F 〉 = α0|0〉 +
∞
∑

N=1

∞
∑

j=1

αN
j |Ψj,N 〉 (2.3)

The zero-particle Hilbert space is one-dimensional and has only one basis function |0〉 which can
be indentified with the number 1. Let

|G〉 = β0|0〉 +
∞
∑

N=1

∞
∑

j=1

βN
j |Φj,N 〉 (2.4)

be another element of Fock space with respect to some other basis {|Φj,N 〉} then the inner product
is defined as

〈F |G〉 ≡ α∗
0β0 +

∞
∑

N=1

∞
∑

i,j=1

αN∗
j βN

i 〈Ψj,N |Φi,N 〉 (2.5)

where 〈Ψj,N |Φi,N 〉 is the inner product in N -particle Hilbert space. One can check that definition
Eq.(2.5) satisfies all the usual requirements of an inner product. We also see that according to our
definition the Fock overlap between states containing different number of particles ia zero, i.e. if
|F 〉 = |Ψi,N 〉 and |G〉 = |Φj,M 〉 then 〈F |G〉 = 0 when N 6= M . Since we will only consider fermions
we further assume that all the N -particle Hilbert spaces consist of anti-symmetric functions.
We are now ready to define the annihilation and creation operators that map wavefunctions from
an n-particle Hilbert space to, respectively a n − 1 and a n + 1-particle Hilbert space. We define
the action of the annihilation operator ψ̂(x) as

(ψ̂(x)Ψn)(x1, . . . ,xn−1) ≡
√
nΨn(x1, . . . ,xn−1,x) (2.6)
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This operator maps an n-particle state to a n − 1 particle state. If Ψn is anti-symmetric it is not
difficult to see that the resulting n − 1-particle state is again anti-symmetric. Corresponding to
this annihilation operator ψ̂(x) we define the adjoint operator ψ̂†(x) which maps a n-partcle state
to a n+ 1-particle state. This operator is called the creation operator. The explicit action of this
operator on a n-particle state Ψn is

(ψ̂†(x)Ψn)(x1, . . . ,xn+1) ≡
(−1)n

√
n+ 1

n+1
∑

j=1

(−1)j+1δ(x − xj)Ψn(x1, . . . x̂j . . .xn+1) (2.7)

where x̂j denotes that this argument is lacking. For example (x1, x̂2,x3,x4) = (x1,x3,x4). Let us

check that ψ̂† is indeed the adjoint of ψ̂. We have

〈Φn−1|ψ̂(x)|Ψn〉 =
√
n

∫

dx1 . . .xn−1 Φ∗
n−1(x1 . . .xn−1)Ψn(x1 . . .xn−1,x) (2.8)

On the other hand we also have

〈Ψn|ψ̂†(x)|Φn−1〉∗ =
1√
n

(−1)n−1
n
∑

j=1

(−1)j+1

∫

dx1 . . .xn Ψn(x1 . . .xn)

× δ(x − xj)Φ
∗
n−1(x1 . . . x̂j . . .xn)

=
1√
n

(−1)n−1
n
∑

j=1

(−1)j+1

∫

dx1 . . .xn Ψn(x1 . . .xj−1,x,xj+1 . . .xn)

×Φ∗
n−1(x1 . . . x̂j . . .xn)

=
1√
n

(−1)n−1
n
∑

j=1

(−1)j+1(−1)n−j

∫

dx1 . . .xn Ψn(x1 . . .xj−1,xj+1 . . .xn,x)

×Φ∗
n−1(x1 . . .xj−1,xj+1 . . .xn)

=
1√
n

n
∑

j=1

∫

dx1 . . . dxn−1Φ
∗
n−1(x1 . . .xn−1)Ψn(x1 . . .xn−1,x)

=
√
n

∫

dx1 . . . dxn−1Φ
∗
n−1(x1 . . .xn−1)Ψn(x1 . . .xn−1,x) (2.9)

From Eqns.(2.8) and (2.9) we see that

〈Φn−1|ψ̂(x)|Ψn〉 = 〈Ψn|ψ̂†(x)|Φn−1〉∗ (2.10)

From this result it is simple to prove that for any Fock space states F and G we have

〈F |ψ̂(x)|G〉 = 〈G|ψ̂†(x)|F 〉∗ (2.11)

This proves that ψ̂†(x) is the adjoint of ψ̂(x).

——————
Exercise

Prove relation (2.11) from Eq.(2.10)
——————
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We did not check sofar that ψ̂†(x)|Ψn〉 is indeed an anti-symmetric n + 1-particle state if Ψn is
antisymmetric. However, this is readily checked as well. Let us interchange elements p and q with
p > q. Then we first write

ψ̂†(x)|Ψn〉 =
(−1)n

√
n+ 1

n+1
∑

j=1(j 6=p,q)

(−1)j+1δ(x − xj)Ψn(x1, . . . x̂j . . .xn+1)

+
(−1)n

√
n+ 1

(−1)pΨ(x1 . . . x̂p . . .xn+1)

+
(−1)n

√
n+ 1

(−1)qΨ(x1 . . . x̂q . . .xn+1) (2.12)

The first term in this equation is certainly anti-symmetric if we interchange p and q. Let us therefore
consider the last two terms. Interchanging xp and xq for these terms gives

(−1)pΨn(x1 . . .xq−1,xp,xq+1 . . . x̂p . . .xn+1) + (−1)pΨn(x1 . . . x̂q, . . .xp−1,xq,xp+1 . . .xn+1)

= (−1)p(−1)p−q+1Ψn(x1 . . . x̂q . . .xn+1) + (−1)q(−1)p−q+1Ψn(x1 . . . x̂p . . .xn+1)

= −(−1)qΨn(x1 . . . x̂q . . .xn+1) − (−1)pΨn(x1 . . . x̂p . . .xn+1) (2.13)

which indeed yields an overall minus sign. We thus see that the creation operator maps an anti-
symmetric n-particle state to an anti-symmetric n+ 1-particle state.

2.2.2 Anti-commutation relations

We subsequently prove a basic anti-commutation relation satisfied by the field operators. We
calculate

ψ̂†(x)ψ̂(x′)Ψn = ψ̂†(x)
√
nΨn(x1, . . . ,xn−1,x

′)

= (−1)n−1
n
∑

j=1

(−1)j+1δ(x − xj)Ψn(x1 . . . x̂j . . .xn,x
′)

= (−1)n−1
n
∑

j=1

(−1)j+1δ(x − xj)(−1)n−jΨn(x1, . . . ,xj−1,x
′,xj . . .xn)

=
n
∑

j=1

δ(x − xj)Ψn(x1, . . . ,xj−1,x
′,xj . . .xn) (2.14)
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We further have

ψ̂(x′)ψ̂†(x)Ψn = ψ̂(x′)
1√
n+ 1

(−1)n
n+1
∑

j=1

(−1)j+1δ(x − xj)Ψn(x1, . . . x̂j . . . ,xn+1)

= (−1)n
n
∑

j=1

(−1)j+1δ(x − xj)Ψn(x1 . . . x̂j . . .xn,x
′)

+ (−1)n(−1)n+2δ(x − x′)Ψn(x1, . . . ,xn)

= (−1)n
n
∑

j=1

(−1)j+1(−1)n−jδ(x − xj)Ψn(x1 . . .xj−1,x
′,xj+1 . . .xn)

+ δ(x − x′)Ψn(x1, . . . ,xn)

= −
n
∑

j=1

δ(x − xj)Ψn(x1 . . .xj−1,x
′,xj+1 . . .xn)

+ δ(x − x′)Ψn(x1, . . . ,xn) (2.15)

From Eqns.(2.14) and (2.15) we find
[

ψ̂(x′)ψ̂†(x) + ψ̂†(x)ψ̂(x′)
]

Ψn = δ(x − x′)Ψn (2.16)

for any wave function Ψn. We thus obtain the basic anti-commutation relation for the field operators
{

ψ̂†(x), ψ̂(x′)
}

= δ(x − x′) (2.17)

where anti-commutation brackets are defined as
{

Â, B̂
}

= ÂB̂ + B̂Â (2.18)

Further anti-commutation between the field operators are readily derived. We have

ψ̂(x)ψ̂(x′)Ψn =
√
n
√
n− 1Ψn(x1 . . .xn−2,x,x

′)

= −
√
n
√
n− 1Ψn(x1 . . .xn−2,x

′,x)

= −ψ̂(x′)ψ̂(x)Ψn (2.19)

for any Ψn and therefore we have
{

ψ̂(x), ψ̂(x′)
}

= 0 (2.20)

By taking the adjoint of this relation we then immediately also have
{

ψ̂†(x), ψ̂†(x′)
}

= 0 (2.21)

2.3 The Hamiltonian in second quantization

With the relation derived in the previous section it is not difficult to express the Hamiltonian in
terms of field operators. Any one-body multiplicative or differential operator Ô can be written as

Ô =
∑

i

o(xi) =

∫

dx ψ̂†(x)o(x)ψ̂(x) (2.22)
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Proof. Using Eq.(2.14) we have
∫

dx ψ̂†(x)o(x)ψ̂(x)|Ψn〉 =

∫

dx o(x′)ψ̂†(x)ψ̂(x′)
∣

∣

∣

x′=x

|Ψn〉

=
∑

j

∫

dx o(x′)δ(x − xj)Ψn(x1 . . .xj−1,x
′,xj+1 . . .xn)

∣

∣

∣

x′=x

=
∑

j

o(xj)|Ψn〉 (2.23)

For example for the second quantized expressions for the kinetic energy and a time-dependent
external scalar potential are given by

T̂ =
∑

i

−1

2
∇2

i = −1

2

∫

dx ψ̂†(x)∇2ψ̂(x)

V̂ (t) =
∑

i

v(xit) =

∫

dx ψ̂†(x)ψ̂(x)v(x, t) (2.24)

Another example, is, for instance, the density operator

n̂(y) =
∑

i

δ(y − xi) =

∫

dx δ(y − x)ψ̂†(x)ψ̂(x) = ψ̂†(y)ψ̂(y) (2.25)

We can further consider two-body operators. Let us consider the expression

ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x)|Ψn〉 =
√
n
√
n− 1ψ̂†(x)ψ̂†(y)Ψn(x1, . . . ,xn−1,y,x)

=
√
n(−1)n−2ψ̂†(x)

n−1
∑

j=1

(−1)j+1δ(y − xj)Ψn(x1, . . . , x̂j . . . ,xn−1,y,x)

=
√
n(−1)nψ̂†(x)

n−1
∑

j

(−1)j+1(−1)n−1−jδ(y − xj)Ψn(x1, . . . ,xn−1,x)

=
√
n ψ̂†(x)Φ

(x,y)
n−1 (x1 . . .xn−1) (2.26)

where we defined the wavefunction

Φ
(x,y)
n−1 (x1 . . .xn−1) = [δ(y − x1) + . . .+ δ(y − xn)]Ψn(x1 . . .xn−1,x) (2.27)

Now since

Φ
(x,y)
n−1 (x1 . . . x̂k . . .xn) =

n
∑

j=1(j 6=k)

δ(y − xj)Φn(x1 . . . x̂k . . . ,xn,x)

= (−1)n−k
n
∑

j=1(j 6=k)

δ(y − xj)Φn(x1 . . .xk−1,x,xk+1 . . . ,xn) (2.28)

it follows from Eq.(2.26) and Eq.(2.28) that

ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x)|Ψn〉 =
√
n ψ̂†(x)Φ

(x,y)
n−1 (x1 . . .xn−1)

= (−1)n−1
n
∑

k

(−1)k+1δ(x − xk)Φ
(x,y)
n−1 (x1 . . . x̂k . . .xn)

=
n
∑

i,j(j 6=k)

δ(x − xk)δ(y − xj)Ψn(x1, . . . ,xn) (2.29)
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So we derived the expression

ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x) =
n
∑

j 6=k

δ(x − xk)δ(y − xj) (2.30)

We see that for the two-particle interaction we can write

Ŵ =
1

2

n
∑

j 6=k

w(xj ,xk) =
1

2

∫

dxdyw(x,y)
n
∑

j 6=k

δ(x − xk)δ(y − xj)

=
1

2

∫

dxdyw(x,y)ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x) (2.31)

Therefore a general Hamiltonian of the form

Ĥ(t) =

n
∑

j=1

h(xj , t) +
1

2

n
∑

j 6=k

w(xj ,xk) (2.32)

can in terms of the field operators be written as

Ĥ(t) =

∫

dx ψ̂†(x)h(x, t)ψ̂(x) +
1

2

∫

dxdyw(x,y)ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x) (2.33)

This is the main result of this section. Let further derive some other often used representation
of the Hamiltonian. Let ϕi(x) be a complete set of orthonormal orbitals in a one-particle Hilbert
space, i.e. we have

δij =

∫

dxϕ∗
i (x)ϕj(x) (2.34)

δ(x − y) =

∞
∑

i=1

ϕ∗
i (x)ϕi(y) (2.35)

Then we can define the annihilation and creation operators with respect to this basis as

âi ≡
∫

dxϕ∗
i (x) ψ̂(x) (2.36)

â†i ≡
∫

dxϕi(x) ψ̂†(x) (2.37)

From the properties of the complete set of orbitals and the anti-commutation relations of the field
operators we then immediately find the expressions

ψ̂(x) =
∞
∑

i=1

ϕi(x) âi (2.38)

ψ̂†(x) =
∞
∑

i=1

ϕ∗
i (x) â†i (2.39)

δij =
{

â†i , âj

}

(2.40)

0 =
{

âi, âj

}

=
{

â†i , â
†
j

}

(2.41)
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—————–
Exercise

How do the operators âi and â†i act on a n-particle wavefunction? Derive expressions Eq.(2.38) to
(2.40).
——————
In terms of the operators âi and â†i the Hamiltonian the attains the following form

Ĥ(t) =
∑

i,j

hij(t) â
†
i âj +

∑

i,j,k,l

Vijkl â
†
i â

†
j âkâl (2.42)

where we defined the coefficients

hij(t) =

∫

dxϕ∗
i (x)h(x, t)ϕj(x) (2.43)

Vijkl =
1

2

∫

dxdyϕ∗
i (x)ϕ∗

j (y)w(x,y)ϕk(y)ϕl(x) (2.44)

—————-
Exercise

Derive the form of the Hamiltonian in Eq.(2.42).
—————–

2.3.1 Some useful relations

Finally we will derive some useful relations that play a role when we will discuss the equations of
motion for the Green function later on. These relations are derived with straightforward use of the
anti-commutation relations of the field operators. Let us evaluate the commutator

[ψ̂(x), ψ̂†(y)ψ̂(z)] = ψ̂(x)ψ̂†(y)ψ̂(z) − ψ̂†(y)ψ̂(z)ψ̂(x)

=
[

δ(x − y) − ψ̂†(y)ψ̂(x)
]

ψ̂(z) − ψ̂†(y)ψ̂(z)ψ̂(x)

= δ(x − y)ψ̂(z) − ψ̂†(y)
{

ψ̂(x), ψ̂(z)
}

= δ(x − y)ψ̂(z) (2.45)

Let Ô now be a one-body operator. Then we immediately see from Eq.(2.45) that

[ψ̂(x), Ô] = [ψ̂(x),

∫

dy ψ̂†(y)o(y)ψ̂(y)] =

∫

dy o(z)[ψ̂(x), ψ̂†(y)ψ̂(z)]
∣

∣

∣

z=y

=

∫

dy o(z)δ(x − y)ψ̂(z)
∣

∣

∣

z=y

= o(x)ψ̂(x) (2.46)

12



This was our first useful relation. Let us continue with the commutator of a two-body operator:

[ψ̂(x), ψ̂†(y)ψ̂†(z)ψ̂(z)ψ̂(y)] = ψ̂(x)ψ̂†(y)ψ̂†(z)ψ̂(z)ψ̂(y) − ψ̂†(y)ψ̂†(z)ψ̂(z)ψ̂(y)ψ̂(x)

=
[

δ(x − y) − ψ̂†(y)ψ̂(x)
]

ψ̂†(z)ψ̂(z)ψ̂(y) − ψ̂†(y)ψ̂†(z)ψ̂(z)ψ̂(y)ψ̂(x)

= δ(x − y)ψ̂†(z)ψ̂(z)ψ̂(y) − ψ̂†(y)
(

[ψ̂(x), ψ̂†(z)ψ̂(z)] + ψ̂†(z)ψ̂(z)ψ̂(x)
)

ψ̂(y)

−ψ̂†(y)ψ̂†(z)ψ̂(z)ψ̂(y)ψ̂(x)

= δ(x − y)ψ̂†(z)ψ̂(z)ψ̂(y) − δ(x − z)ψ̂†(y)ψ̂(z)ψ̂(y) − ψ̂†(y)ψ̂†(z)ψ̂(z)
{

ψ̂(x), ψ̂(y)
}

= δ(x − y)ψ̂†(z)ψ̂(z)ψ̂(y) + δ(x − z)ψ̂†(y)ψ̂(y)ψ̂(z) (2.47)

With this relation we see immediately that the commutator of the field operator ψ̂(x) with the
two-particle interaction Ŵ is given by

[ψ̂(x), Ŵ ] =
1

2

∫

dydzw(y, z)[ψ̂(x), ψ̂†(y)ψ̂†(z)ψ̂(z)ψ̂(y)]

=
1

2

∫

dydzw(y, z)
(

δ(x − y)ψ̂†(z)ψ̂(z)ψ̂(y) + δ(x − z)ψ̂†(y)ψ̂(y)ψ̂(z)
)

=

∫

dzw(x, z)ψ̂†(z)ψ̂(z)ψ̂(y) (2.48)

This is our second useful relation.
——————
Exercise

Derive analogously the following relations

[ψ̂†(x), ψ̂†(y)ψ̂(z)] = −δ(x − z)ψ̂†(y) (2.49)
[

ψ̂†(x), ψ̂†(y)ψ̂†(z)ψ̂(z)ψ̂(y)
]

= −δ(x − y)ψ̂†(y)ψ̂†(z)ψ̂(z) − δ(x − z)ψ̂†(z)ψ̂†(y)ψ̂(y)(2.50)

and consequently the following expressions for the commutator with a one-body operator Ô and
two-particle interaction Ŵ :

[ψ̂†(x), Ô] = −o(x)ψ̂†(x) (2.51)
[

ψ̂†(x), Ŵ ] = −
∫

dzw(x, z)ψ̂†(x)ψ̂†(z)ψ̂(z) (2.52)

———————–
We now collect our results and calculate the commutator of the field operators with the Hamiltonian.
We the relations derived above we obtain:

[

ψ̂(x), Ĥ(t)] = h(x, t)ψ̂(x) +

∫

dyw(x,y)ψ̂†(y)ψ̂(y)ψ̂(x) (2.53)

[

ψ̂†(x), Ĥ(t)] = −h(x, t)ψ̂†(x) −
∫

dyw(x,y)ψ̂†(x)ψ̂†(y)ψ̂(y) (2.54)
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Chapter 3

The time contour

3.1 The evolution operator

3.1.1 Definition

Let |Ψ(t)〉 be a solution to the TDSE then the time evolution operator Û(t, t′) is defined by the
relation

|Ψ(t)〉 = Û(t, t′)|Ψ(t′)〉 (3.1)

i.e. it maps a wave function at time t′ to a wave function at time t. It obviously satisfies the
relation Û(t, t) = 1. If we differentiate Eq.(3.1) with respect to t and use the TDSE we obtain

i∂tÛ(t, t′)|Ψ(t′)〉 = Ĥ(t)Û(t, t′)|Ψ(t′)〉 (3.2)

Since |Ψ(t′)〉 is arbitrary we find that

i∂tÛ(t, t′) = Ĥ(t)Û(t, t′) (3.3)

On the other hand if we differentiate Eq.(3.1) with respect to t′ we obtain

0 = (i∂t′Û(t, t′))|Ψ(t′)〉 + Û(t, t′)Ĥ(t′)|Ψ(t′)〉 (3.4)

This must be again true for any |Ψ(t′)〉 and therefore we have

i∂t′Û(t, t′) = −Û(t, t′)Ĥ(t′) (3.5)

We thus see that the evolution operator satisfies the relations

i∂tÛ(t, t′) = Ĥ(t)Û(t, t′) (3.6)

i∂t′Û(t, t′) = −Û(t, t′)Ĥ(t′) (3.7)

Û(t, t) = 1 (3.8)
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These relations completely define the properties of the evolution operator. If we integrate Eq.(3.6)
from t′ to t where t > t′ we have

Û(t, t′) − Û(t′, t′) =

∫ t

t′
dt̄1∂t̄1Û(t̄1, t

′) = −i
∫ t

t′
dt̄1Ĥ(t̄1)Û(t̄1, t

′) (3.9)

and we obtain the expression

Û(t, t′) = 1 − i

∫ t

t′
dt̄1Ĥ(t̄1)Û(t̄1, t

′) (3.10)

This expression can be iterated to give

Û(t, t′) = 1 +
∞
∑

n=1

(−i)n

∫ t

t′
dt̄1

∫ t̄1

t′
dt̄2 . . .

∫ t̄n−1

t′
dt̄n Ĥ(t̄1) . . . Ĥ(t̄n)

= 1 +
∞
∑

n=1

(−i)n

n!

∫ t

t′
dt̄1

∫ t

t′
dt̄2 . . .

∫ t

t′
dt̄n T [Ĥ(t̄1) . . . Ĥ(t̄n)] (3.11)

where we in the last step could make all integrals run from t′ to t by introducing the time-ordered
product

T [Ĥ(t̄1) . . . Ĥ(t̄n)] =
∑

P

θ(t̄P (1) − t̄P (2)) . . . θ(t̄P (n−1) − t̄P (n))Ĥ(t̄P (1)) . . . Ĥ(t̄P (n)) (3.12)

where P runs over all permutations of the numbers 1 . . . n. The latter expression is known as the
time-ordered product which orders the operators at the latest times to the left. Similarly we can
integrate Eq.(3.7) from t to t′ when t′ > t. This gives

Û(t, t′) − Û(t, t) =

∫ t′

t

dt̄1∂t̄1Û(t, t̄1) = i

∫ t′

t

dt̄1Û(t, t̄1)Ĥ(t̄1) (3.13)

and therefore we have

Û(t, t′) = 1 + i

∫ t′

t

dt̄1Û(t, t̄1)Ĥ(t̄1) (3.14)

Iteration of this equation now gives

Û(t, t′) = 1 +
∞
∑

n=1

in
∫ t

t′
dt̄1

∫ t̄1

t′
dt̄2 . . .

∫ t̄n−1

t′
dt̄n Ĥ(t̄n) . . . Ĥ(t̄1)

= 1 +
∞
∑

n=1

in

n!

∫ t

t′
dt̄1

∫ t

t′
dt̄2 . . .

∫ t

t′
dt̄n T̃ [Ĥ(t̄1) . . . Ĥ(t̄n)] (3.15)

where now we defined anti-chronological time-ordering by

T̃ [Ĥ(t̄1) . . . Ĥ(t̄n)] =
∑

P

θ(t̄P (1) − t̄P (2)) . . . θ(t̄P (n−1) − t̄P (n))Ĥ(t̄P (n)) . . . Ĥ(t̄P (1)) (3.16)

i.e the latest times are ordered to the right. We can this formally write

Û(t, t′) = T exp(−i
∫ t

t′
dτĤ(τ)) when t′ < t (3.17)

Û(t, t′) = T̃ exp(i

∫ t′

t

dτĤ(τ)) when t′ > t (3.18)
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3.1.2 Evolution of ensembles

In the remainder of these lectures we will discuss the evolution of systems that are originally
in thermodynamic equilibrium. In that case statistical mechanics tells us that the expectation
values of operators are given as traces of appropriate ensembles. Let us therefore recall some basic
definitions. The trace of an operator Â is defined as

Tr
{

Â
}

=
∑

i

〈Ψi|Â|Ψi〉 (3.19)

where {|Ψi〉} is a complete set in Fock space. The trace is independent of chosen set. This is easily
seen by insertion of a complete set:

∑

i

〈Φi|Â|Φi〉 =
∑

i,j

〈Φi|Â|Ψj〉〈Ψj |Φi〉

=
∑

i,j

〈Ψj |Φi〉〈Φi|Â|Ψj〉 =
∑

j

〈Ψj |Â|Ψj〉 (3.20)

If we now consider a system at temperature T then its equilibrium expectation value of operator
Ô in the grand canonical ensemble is given by

〈Ô〉 =

∑

i〈Ψi|Ô|Ψi〉e−β(Ei−µNi)

∑

i e
−β(Ei−µNi)

(3.21)

where β = 1/kBT and kB is the Boltzmann constant and where |Ψi〉 present energy eigenstates of
the system. This expression can equivalently be written as

〈Ô〉 = Tr
{

ρ̂ Ô
}

(3.22)

where we defined

ρ̂ =
e−β(Ĥ−µN̂)

Tr e−β(Ĥ−µN̂)
(3.23)

When we apply an external field to a system initially in thermodynamic equilibrium, it will subse-
quently evolve in time. It is this time-dependennce that we want to study. Our Hamiltonian will
have the general form.

Ĥ(t) =

∫

dx ψ̂†(x)h(r, t)ψ̂(x) +
1

2

∫ ∫

dx1dx2 ψ̂
†(x1)ψ̂

†(x2)
1

|r1 − r2|
ψ̂(x2)ψ̂(x1), (3.24)

where

h(r, t) =
1

2
[−i∇ + A(r, t)]2 + v(r, t) − µ. (3.25)

In the latter equation we introduced external potential v(r, t) and vector potential A(r, t) which
are switched on at t = t0, i.e for t < t0 our Hamiltonian will be time-independent. Note that we
also included the chemical potential in the definition of h. This means that we can simplify the
expression of the statistical operator ρ̂ to

ρ̂ =
e−βĤ0

Tr e−βĤ0

(3.26)
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Figure 3.1: Keldysh contour. The forward and backward parts of the contour are on the real axis
but are plotted slightly off this axis to display the two branches more clearly.

where we denote by Ĥ0 the Hamiltonian for times t < t0. After we switch on an external field the
initial equilibrium ensemble will evolve in time and the new expectation value becomes

〈Ô(t)〉 =

∑

i〈Ψi(t)|Ô|Ψi(t)〉e−βEi

∑

i e
−βEi

= Tr
{

ρ̂ ÔH(t)
}

(3.27)

where
ÔH(t) = Û(t0, t)Ô(t)Û(t, t0) (3.28)

is the operator in the Heisenberg picture. Our task is now to evaluate such expectation values.
First we will analyze the expression Eq.(3.27) a bit further.

3.2 Contour ordering

3.2.1 Definition of the contour

The operator e−βĤ0 can now be regarded as an evolution operator in imaginary time, i.e.

Û(t0 − iβ, t0) = e−βĤ0 (3.29)

if we define Ĥ(t) to be equal to Ĥ0 on the contour running straight from t0 to t0−iβ in the complex
time plane. We can therefore rewrite our expression for the expectation value as

〈Ô(t)〉 =
Tr

{

Û(t0 − iβ, t0)Û(t0, t) Ô Û(t, t0)
}

Tr
{

Û(t0 − iβ, t0)
} (3.30)

If we read the time arguments of the evolution operators in the numerator of this expression from
left to right we may say that the system evolves from t0 along the real time axis to t after which
the operator Ô acts. Then the system evolves back along the real axis from time t to t0 and finally
parallel to the imaginary axis from t0 to t0 − iβ. A corresponding contour, origianlly introduced
by Keldysh [1], is displayed in Fig. 3.1. With this observation we rewrite Eq.(3.30) as
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〈Ô(t)〉 =
Tr

{

TC [exp (−i
∫

C
dt̄Ĥ(t̄))Ô(t)]

}

Tr
{

TC [exp (−i
∫

C
dt̄Ĥ(t̄))]

} (3.31)

where we define

TC [exp (−i
∫

C

dt̄Ĥ(t̄))Ô(t)] ≡
∞
∑

n=0

(−i)n

n!

∫

C

dt̄1 . . . dt̄nTC [Ô(t)Ĥ(t̄1) . . . Ĥ(t̄n)] (3.32)

and we further defined the contour-ordered product

TC [Â1(t̄1) . . . Ân(t̄n)] =
∑

P

θ(t̄P (1), t̄P (2)) . . . θ(t̄P (n−1), t̄P (n))ÂP (1)(t̄P (1)) . . . ÂP (n)(t̄P (n)) (3.33)

where θ(t1, t2) are contour step functions θ generalized to arguments on the contour [2],

θ(t1, t1′) =

{

1

0

if t1 is later than t1′ on the contour

otherwise
(3.34)

For instance, time t1 in Fig. 3.1 is later than time t2 on the contour. All the time-integrals in
Eq.(3.32) are taken along the contour.

3.2.2 Functional derivatives and the time-dependence of expectation values

This observation motivates us to define the following action functional

S = i ln Tr
{

Û(t0 − iβ, t0)
}

, (3.35)

where we define the evolution operator on the contour as

Û(t, t′) = TC exp(−i
∫ t

t′
dt̄Ĥ(t̄)). (3.36)

Let us now see how this functional can be used as a generating functional by making variations
with respect to parameters in the Hamiltonian. To do this one needs to consider changes in Û .
When we make a perturbation δV̂ (t) in the Hamiltonian we have using Eqs.(3.6), (3.7) and (3.8) :

i∂t δÛ(t, t′) = δV̂ (t)Û(t, t′) + Ĥ(t)δU(t, t′) (3.37)

i∂t′ δÛ(t, t′) = −Û(t, t′)δV̂ (t′) − δÛ(t, t′)Ĥ(t′) (3.38)

δÛ(t, t) = 0 (3.39)

The solution to this equation is given by

δÛ(t, t′) = −i
∫ t

t′
dτÛ(t, τ)δV̂ (τ)U(τ, t′) (3.40)

from which variations in the action can be calculated.
—————–
Exercise

Check that Eq.(3.40) is a solution to Eqs.(3.37) and Eq.(3.38) satisfying boundary condition
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Eq.(3.39).
——————-
For instance, if we choose

δV̂ (t) =

∫

dx δv(xt)n̂(x) (3.41)

where n̂(x) = ψ̂†(x)ψ̂(x) is the density operator we have

δÛ(t0 − iβ, t0)

δv(xt)
= −iÛ(t0 − iβ, t)n̂(x)Û(t, t0) = −iÛ(t0 − iβ, t0)n̂H(xt) (3.42)

From this equation we have

δS

δv(xt)
=

Tr
{

Û(t0 − iβ, t)n̂(x)Û(t, t0)
}

Tr
{

Û(t0 − iβ, t0)
} = 〈n̂(x, t)〉 (3.43)

Similarly we can also calculate the change in expectation values.

δ

δv(x2t2)
〈Ô(t1)〉 =

δ

δv(x2t2)

Tr
{

Û(t0 − iβ, t1)Ô(t1)Û(t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

= −iθ(t1, t2)
Tr

{

Û(t0 − iβ, t1)Ô(t1)Û(t1, t2)n̂(x2)Û(t2, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

−iθ(t2, t1)
Tr

{

Û(t0 − iβ, t2)n̂(x2)Û(t2, t1)Ô(t1)Û(t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

+i
Tr

{

Û(t0 − iβ, t1)Ô(t1)Û(t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

Tr
{

Û(t0 − iβ, t2)n̂(x2)Û(t2, t0)
}

Tr
{

Û(t0 − iβ, t0)
} (3.44)

where the last term follows from differentiation of the denominator. The equation (3.44) can be
rewritten as

δ〈Ô(t1)〉
δv(x2t2)

= −iθ(t1, t2)〈ÔH(t1)n̂H(x2t2)〉 − iθ(t2, t1)〈n̂H(x2t2)ÔH(t1)〉+ i〈Ô(t1)〉〈n̂H(x2t2)〉 (3.45)

If we define the fluctuation operator

∆ÔH(xt) = ÔH(xt) − 〈ÔH(xt)〉 (3.46)

this can be rewritten as

δ〈Ô(t1)〉
δv(x2t2)

= −iθ(t1, t2)〈∆ÔH(t1)∆n̂H(x2t2)〉 − iθ(t2, t1)〈∆n̂H(x2t2)∆ÔH(t1)〉

= −i〈TC [∆ÔH(t1)∆n̂H(x2t2)]〉 (3.47)

Similarly we can calculate derivatives of time-ordered products. We have

δ〈TC [Â(t1)B̂(t2)]〉
δv(x3t3)

= −i〈TC [Â(t1)B̂(t2)n̂H(x3t3)]〉 + i〈n̂H(x3t3)〉〈TC [〈Â(t1)B̂(t2)]〉

= −i〈TC [Â(t1)B̂(t2)∆n̂H(x3t3)]〉 (3.48)
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——————
Exercise

Prove relation (3.48)
——————
We finally consider the time-dependence of expectation values and consider the time-derivative of
an expectation value 〈Ô(t)〉. We then can calculate using Eqs.(3.6) and Eq.(3.7) :

i∂tÔH(t) = i∂t Û(t0, t)Ô(t)Û(t, t0) = −Û(t0, t)Ĥ(t)Ô(t)Û(t, t0)

+Û(t0, t)Ô(t)Ĥ(t)Û(t, t0) + iÛ(t0, t)∂tÔ(t)Û(t, t0)

= Û(t0, t)
{

[Ô(t), Ĥ(t)] + i∂tÔ(t)
}

Û(t, t0)

= [ÔH(t), ĤH(t)] + i(∂tÔ(t))H (3.49)

where in the last step we used that for two operators Â and B̂ we have

Û(t0, t)Â(t)B̂(t)Û(t, t0) = Û(t0, t)Â(t)Û(t, t0)Û(t0, t)B̂(t)Û(t, t0)

= ÂH(t)B̂H(t) (3.50)

When we use expression (3.49) in the definition of the expectation value (3.30) we obtain

i∂t〈Ô(t)〉 = 〈[ÔH(t), ĤH(t)]〉 + i〈(∂tÔ(t))H〉 (3.51)

3.2.3 Calculations with contour-ordered functions

In this section we will derive some relations that we will use later on. For simplicity we will
introduce the notation i = x1ti for the space-time variables. In the previous section we saw that
differentiation of expectation values naturally led to the consideration of contour-ordered operators
of the form:

〈TC [Â(1)B̂(2)]〉 = θ(t1, t2)〈Â(1)B̂(2)〉 + θ(t2, t1)〈B̂(2)Â(1)〉 (3.52)

We therefore consider general functions of the form

a(t, t′) = aδ(t) δ(t, t′) + θ(t, t′) a>(t, t′) + θ(t′, t) a<(t, t′) (3.53)

where the delta function on the contour is defined as ∂tθ(t, t
′). A function of this form is said to

belong to Keldysh space. When we consider the equation of motion of the Green function later we
have to calculate contour integrals of products of such functions, i.e. function of the form

c(t, t′) =

∫

C

dt̄ a(t, t̄) b(t̄, t′) (3.54)

where both a and b belong to Keldysh space. We will see that such a function also belongs to
Keldysh space. Let us work out this integral. We have :

c(t, t′) = a(t, t′)bδ(t′) + aδ(t)b(t, t′)

+

∫

C

dt̄
[

θ(t, t̄)θ(t̄, t′)a> b> + θ(t, t̄)θ(t′, t̄)a> b< + θ(t̄, t)θ(t̄, t′)a< b> + θ(t̄, t)θ(t′, t̄)a> b>
]

(3.55)
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We can now consider several cases let t > t′ on the contour and be real. Then we have

c>(t, t′) = a>(t, t′)bδ(t′) + aδ(t)b>(t, t′)

+

∫ t

t′
dt̄ a>(t, t̄)b>(t̄, t′) +

∫ t′

t0

dt̄ a>(t, t̄)b<(t̄, t′) +

∫ t0−iβ

t

dt̄ a<(t, t̄)b>(t̄, t′) (3.56)

We denote

a<(t, t0 − iτ) = ae(t, τ) (3.57)

a>(t0 − iτ, t) = ad(τ, t) (3.58)

This notation is quite suggestive when one reads the symbols e and d from left to right. For instance
e has a horizontal segment followed by a vertical one; correspondingly ae has a first argument that
is real (and thus lies on the horizontal axis) and a second argument that is imaginary (and lies on
the vertical axis). With the notations of Eq.(3.57) and Eq.(3.58) we can rewrite expression (3.56)
as

c>(t, t′) = a>(t, t′)bδ(t′) + aδ(t)b>(t, t′) +

∫ t

t0

dt̄ [a>(t, t̄) − a<(t, t̄)]b>(t̄, t′)

−
∫ t′

t0

dt̄ a>(t, t̄)[b>(t̄, t′) − b<(t̄, t′)] − i

∫ β

0
dτ ae(t, τ)bd(τ, t′) (3.59)

When we define the retarded and advanced functions in physical time as

aR(t, t′) = aδ(t)δ(t− t′) + θ(t− t′)[a>(t, t′) − a<(t, t′)] (3.60)

aA(t, t′) = aδ(t)δ(t− t′) − θ(t′ − t)[a>(t, t′) − a<(t, t′)] (3.61)

then Eq.(3.59) can be written shortly as

c>(t, t′) =

∫ ∞

t0

dt̄ aR(t, t̄)b>(t̄, t′) +

∫ ∞

t0

dt̄ a>(t, t̄)bA(t̄, t) − i

∫ β

0
dτ ae(t, τ)bd(τ, t′) (3.62)

This expression can be even more simplified when we introduce the notation

a · b =

∫ ∞

t0

dt̄ a(t̄) b(t̄) (3.63)

a ? b = −i
∫ β

0
dτ a(τ) b(τ) (3.64)

Then we simply find
c> = aR · b> + a> · bA + ae ? bd (3.65)

From Eq.(3.56) we can also derive an expression when t > t′ on the contour and when t is on the
imaginary part of the contour t = t0 − iτ . Equation (3.55) then becomes

cd(τ, t′) = c>(t0 − iτ, t′) = a>(t0 − iτ, t′)bδ(t′) + aδ(t0 − iτ)b>(t0 − iτ, t′)

+

∫ t0−iτ

t′
dt̄ a>(t0 − iτ, t̄)b>(t̄, t′) +

∫ t′

t0

dt̄ a>(t0 − iτ, t̄)b<(t̄, t′)

+

∫ t0−iβ

t0−iτ

dt̄ a<(t, t̄)b>(t̄, t′) (3.66)
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This expression can be rewritten as

cd(τ, t′) = ad(τ, t′)bδ(t′) + aδ(t0 − iτ)bd(τ, t′) −
∫ t′

t0

dt̄ ad(τ, t̄)[b>(t̄, t′) − b<(t̄, t′)]

+

∫ t0−iτ

t0

dt̄ a>(t0 − iτ, t̄)bd(t̄, t′) +

∫ t0−iβ

t0−iτ

dt̄ a<(t0 − iτ, t̄)bd(τ̄ , t′)

=

∫ ∞

t0

dt̄ ad(τ, t̄) bA(t̄, t′) − i

∫ β

0
dτ̄ aM(τ, τ̄)bd(τ̄ , t′) (3.67)

where, for convenience, we defined the Matsubara function aM as the function a restricted to the
imaginary part of the contour

aM(τ1, τ2) = i aδ(t̄1)δ(τ1 − τ2) + θ(τ1 − τ2)a
>(t̄1, t̄2) + θ(τ2 − τ1)a

<(t̄2, t̄1) (3.68)

where in this expression t̄1 = t0 − iτ1 and t̄2 = t0 − iτ2. Equation (3.67) can in condensed notation
be rewritten as

cd = ad · bA + aM ? bd (3.69)

Finally, if we let t and t′ be both on the imaginary part of the contour then one readily sees that
the real part of the contour does not contribute in Eq.(3.54) and we immediately find that

cM = aM ? bM (3.70)

—————
Exercise

Derive the relations

c< = aR · b< + a< · bA + ae ? bd (3.71)

ce = aR · be + ae ? bM (3.72)

—————–
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Chapter 4

The Green function

4.1 Definition

Before we give the definition of the Green function we first extend our definition of time-ordering
slightly. Sofar we only considered operators at a particular time that consist of products of an
even number of field operators, such as the Hamiltonian and operators that represent observables.
Such operators we call non-fermionic (they are, however, not bosonic in general since they need
not satisfy bosonic commutation relations). However, in the following we will also consider time-
ordering of fermionic field operators themselves. To treat this case the definition of time-ordering
is extended to

TC [Â1(t̄1) . . . Ân(t̄n)] =
∑

P

(−1)FP θ(t̄P (1), t̄P (2)) . . . θ(t̄P (n−1), t̄P (n))ÂP (1)(t̄P (1)) . . . ÂP (n)(t̄P (n))

(4.1)
where FP is the number of times that a fermionic operator gets interchanged with another fermionic
operator in the permutation P . Let us give an example. Let Ô be a non-fermionic operator that
consist of products of an even number of field operators. Then according to our definition we have

TC [ψ̂H(1)ψ̂†
H(2)Ô(3)] =

θ(t1, t2) θ(t2, t3) ψ̂H(1)ψ̂†
H(2)Ô(3) + θ(t1, t3) θ(t3, t2) ψ̂H(1)Ô(3)ψ̂†

H(2)

+ θ(t3, t1) θ(t1, t2) Ô(3)ψ̂H(1)ψ̂†
H(2) − θ(t2, t1) θ(t1, t3) ψ̂

†
H(2)ψ̂H(1)Ô(3)

− θ(t2, t3) θ(t3, t1) ψ̂
†
H(2)Ô(3)ψ̂H(1) − θ(t3, t2) θ(t2, t1) Ô(3)ψ̂†

H(2)ψ̂H(1) (4.2)

We see that the last three terms gained a minus sign as ψ̂†
H(2) and ψ̂H(1) were interchanged in

these terms. With this definition of time-ordering we now define the one-particle Green’s function
G as

G(1, 2) =
1

i

Tr
{

Û(t0 − iβ, t0)TC

[

ψ̂H(1)ψ̂†
H(2)

]}

Tr
{

Û(t0 − iβ, t0)
}

= −i〈TC [ψ̂H(1)ψ̂†
H(2)]〉, (4.3)
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This can be written in the form

G(1, 2) = θ(t1, t2)G
>(1, 2) + θ(t2, t1)G

<(1, 2). (4.4)

where we introduced the greater and lesser Green functions G> and G< according to

G>(1, 2) = −i〈ψ̂H(1)ψ̂†
H(2)〉 (4.5)

G<(1, 2) = i〈ψ̂†
H(2)ψ̂H(1)〉 (4.6)

Let us now derive the boundary conditions that G satisfies. If we consider the Green function at
t1 = t0 − iβ and use the cyclic property of the trace we find

G(x1t0 − iβ, 2) =
1

i

Tr
{

ψ̂(x1)Û(t0 − iβ, t2)ψ̂
†(x2)Û(t2, t0)

}

Tr
{

Û(t0 − iβ, t0)
}

=
1

i

Tr
{

Û(t0 − iβ, t2)ψ̂
†(x2)Û(t2, t0)ψ̂(x1)

}

Tr
{

Û(t0 − iβ, t0)
} = −G(x1t0, 2). (4.7)

The Green function defined in Eq. (4.3) therefore obeys the boundary condition G(x1t0, 2) =
−G(x1t0 − iβ, t2). The property G(1,x2t0) = −G(1,x2t0 − iβ) for the other argument is likewise
easily verified. These boundary conditions are sometimes referred to as the Kubo-Martin-Schwinger
conditions [3, 4, 5]. Similar boundary conditions are satisfied by the usual equilibrium temperature
Green function which, in fact, is obtained for the special case where the time arguments are located
on the contour along the imaginary axis t0 to t0 − iβ, where the Hamiltonian is time-independent.
Analogously to the one-particle Green function one can further define the n-particle Green function

Gn(1, . . . , n, 1′, . . . , n′) = (−i)n〈TC [ψ̂H(1) . . . ψ̂H(n)ψ̂†
H(1′) . . . ψ̂†

H(n′)]〉 (4.8)

Also these Green function satisfy Kubo-Martin-Schwinger boundary conditions. One can derive a
set of so-called hierarchy equations of motion that relate the n-particle Green function to the n± 1
-particle Green functions.

——————-
Exercise

Derive the condition
G(1,x2t0) = −G(1,x2t0 − iβ) (4.9)

———————

4.2 Physical content

4.2.1 Expectation values

The Green function G is a basic ingredient in a diagrammatic perturbation expansion and it directly
gives us the expectation values of one-particle operators. A one-body operator Ô can be expressed
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as

〈Ô(t)〉 =

∫

dx o(x′t)〈ψ̂†(x, t)ψ̂(x′t)〉
∣

∣

∣

x′=x

= −i
∫

dx o(x′t)G<(xt,x′t)
∣

∣

∣

x′=x

(4.10)

For instance, if we denote by 1+ the limit to t1 from above on the contour, the density is quite
simply

〈n̂(1)〉 = −iG(1, 1+) (4.11)

and the current density is

〈j(1)〉 = −i
{[∇1

2i
− ∇1′

2i
+ A(1)

]

G(1, 1′)

}

1′=1+

(4.12)

The calculated observables will obviously depend on what approximation scheme we use to obtain
G. It is therefore important that these approximations are such that the calculated observables
satisfy the macroscopic conservation laws, like e.g. the continuity equation, ∂t〈n̂〉 = −∇ · 〈j〉. Such
approximations are called conserving approximations and will be discussed later on.

4.2.2 Removal and addition energies

We will now derive a useful relation for the Green function that clearly displays its physical content.
This relation is known as the Lehmann representation. We first consider the Green function on the
imaginary part of the contour. In that case we have t = −iτ where τ runs from 0 to β (we put the
time t0 to zero without loss of generality). In that case we have

G(x1,−iτ1,x2,−iτ2) = GM(x1τ1,x2τ2)

= θ(τ1 − τ2)G
>(x1,−iτ1,x2,−iτ2) + θ(τ2 − τ1)G

<(x1,−iτ1,x2,−iτ2) (4.13)

Let us first analyze G<. We have

G<(x1,−iτ1,x2,−iτ2) = i〈ψ̂†(x2,−iτ2)ψ̂(x1,−iτ1)〉

= i
1

Z

∑

i

〈Ψi|e−βĤ0eĤ0τ2ψ̂†(x2)e
−Ĥ0τ2eĤ0τ1ψ̂(x1)e

−Ĥ0τ1 |Ψi〉

= i
1

Z

∑

i,j

e−βEieEi(τ2−τ1)〈Ψi|ψ̂†(x2)e
−Ĥ0τ2 |Ψj〉〈Ψj |eĤ0τ1ψ̂(x1)|Ψi〉

= i
1

Z

∑

i,j

e−βEie(Ei−Ej)(τ2−τ1)〈Ψi|ψ̂†(x2)|Ψj〉〈Ψj |ψ̂(x1)|Ψi〉 (4.14)

where we defined Z = Tr
{

Û(t0 − iβ, t0)
}

. We can do a similar calculation for G>

G>(x1,−iτ1,x2,−iτ2) = −i〈ψ̂(x1,−iτ1)ψ̂†(x2,−iτ2)〉

= −i 1

Z

∑

i

〈Ψi|e−βĤ0eĤ0τ1ψ̂(x1)e
−Ĥ0τ1eĤ0τ2ψ̂†(x2)e

−Ĥ0τ2 |Ψi〉

= −i 1

Z

∑

i,j

e−βEieEi(τ1−τ2)〈Ψi|ψ̂(x1)e
−Ĥ0τ1 |Ψj〉〈Ψj |eĤ0τ2ψ̂†(x2)|Ψi〉

= −i 1

Z

∑

i,j

e−βEie(Ei−Ej)(τ1−τ2)〈Ψi|ψ̂(x1)|Ψj〉〈Ψj |ψ̂†(x2)|Ψi〉 (4.15)
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Let us check the anti-periodicity conditions. We have for 0 ≤ τ2 ≤ β :

G(x1, 0,x2,−iτ2) = G<(x1, 0,x2,−iτ2) (4.16)

G(x1,−iβ,x2,−iτ2) = G>(x1,−iβ,x2,−iτ2) (4.17)

and thereforewe must have

G<(x1, 0,x2,−iτ2) = −G>(x1,−iβ,x2,−iτ2) (4.18)

From the explicit expressions Eq.(4.15) and Eq.(4.14) we see that this relation is indeed satisfied.
When we consider finite electronic systems we can often take the zero temperature limit (β → ∞).
In that case we can choose the chemical potential such that E0 < 0 and Ei > 0. If the ground state
then has N particles we find for G≶ the following expressions

G<(x1,−iτ1,x2,−iτ2) = i
∑

j

e(EN,0−EN−1,j)(τ2−τ1)〈Ψ0|ψ̂†(x2)|N − 1, j〉〈N − 1, j|ψ̂(x1)|Ψ0〉

G>(x1,−iτ1,x2,−iτ2) = −i
∑

j

e(EN,0−EN+1,j)(τ1−τ2)〈Ψ0|ψ̂(x1)|N + 1, j〉〈N + 1, j|ψ̂†(x2)|Ψ0〉

where |N ± 1, j〉 denote N ± 1 -particle eigenstates of the system. The calculation above could, of
course, also easily have been carried out in real time on the real axis provided we do not switch-on
any time-dependent external fields. In that case we have (for simplicity in the zero-temperature
limit)

G<(x1, t1,x2, t2) = i
∑

j

ei(EN,0−EN−1,j)(t2−t1)〈Ψ0|ψ̂†(x2)|N − 1, j〉〈N − 1, j|ψ̂(x1)|Ψ0〉

G>(x1, t1,x2, t2) = −i
∑

j

ei(EN,0−EN+1,j)(t1−t2)〈Ψ0|ψ̂(x1)|N + 1, j〉〈N + 1, j|ψ̂†(x2)|Ψ0〉

With the definitions of the so-called Feynman-Dyson aplitudes

gj(x1) = 〈N − 1, j|ψ̂(x1)|Ψ0〉 (4.19)

fj(x1) = 〈Ψ0|ψ̂(x1)|N + 1, j〉 (4.20)

These expressions simplify to

G<(x1,x2; t1 − t2) = i
∑

j

ei(EN,0−EN−1,j)(t2−t1)gj(x1)g
∗
j (x2) (4.21)

G>(x1,x2, t1 − t2) = −i
∑

j

ei(EN,0−EN+1,j)(t1−t2)fj(x1)f
∗
j (x2) (4.22)

We can now for the equilibrium situation define the spectral functions

A≶(x1,x2;ω) = i

∫

dτG≶(x1,x2; τ)e
iωτ (4.23)

We find the explicit expressions

A<(x1,x2;ω) = −
∑

j

gj(x1)g
∗
j (x2) δ(ω − (EN,0 − EN−1,j)) (4.24)

A>(x1,x2;ω) =
∑

j

fj(x1)f
∗
j (x2) δ(ω + (EN,0 − EN+1,j)) (4.25)

We thus see that Fourier transforming G< gives a function that is peaked at the ionization energies
of the system, whereas Fourier transforming G> gives a function that is peaked at the addition
energies or affinities. For instance, photo-electron spectra can directly calculated from knowledge
of A<.
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4.2.3 Excitation energies

The time-propagation of the Green function gives also the expectation values of the time-dependent
one-body observables. A subsequent Fourier transformation then gives us also directly the excita-
tion energies of the system. Let us illustrate this with the density operator. The time-dependent
density is directly obtained from the Green function from Eq.(4.11). If we expand the density in
powers of the external field we obtain

〈n̂H(1)〉 = n0(x1) +

∫

d2
δ〈n̂H(1)〉
δv(2)

v(2) +
1

2

∫

d2d3
δ2〈n̂H(1)〉
δv(2)δv(3)

v(2)v(3) + . . .

= n0(x1) + (−i)
∫

d2 〈TC [∆n̂H(1)∆n̂H(2)]〉v(2)

+
(−i)2

2

∫

d2d3 〈TC [∆n̂H(1)∆n̂H(2)∆n̂H(3)]〉v(2)v(3) + . . .

(4.26)

where we used Eqs.(3.47) and Eq.(3.48). If we undo the contoour integrations we obtain the linear
and higher order density response functions. Let us for instance consider the linear term. We write

χ(1, 2) = −i〈TC [∆n̂H(1)∆n̂H(2)]〉 = θ(t1, t2)χ
>(1, 2) + θ(t2, t1)χ

<(1, 2) (4.27)

where

χ>(1, 2) = −i〈∆n̂H(1)∆n̂H(2)〉 (4.28)

χ>(1, 2) = −i〈∆n̂H(2)∆n̂H(1)〉 (4.29)

Then we have

〈n̂H(1)〉 − n0(x1) =

∫

d2χ(1, 2)v(2) =

∫ t1

t0

d2χ>(1, 2)v(2) +

∫ t0

t1

χ<(1, 2)v(2)

=

∫ t1

t0

d2 (χ>(1, 2) − χ<(1, 2))v(2) =

∫ ∞

t0

χR(1, 2)v(2) (4.30)

where we used that external perturbing field is zero on the imaginary part of the contour and we
define the retarded response function as

χR(1, 2) = θ(t1 − t2)(χ
>(1, 2) − χ<(1, 2)) = −iθ(t1 − t2)〈[n̂H(1), n̂H(2)]〉 (4.31)

and where we used that the commutators of two operators is the same as the commutators of the
corresponding fluctuation operators. Now the operators χ≶ have a similar Lehmann representation
as the Green function. For instance in the zero temperature limit we have

χ<(x1, t1,x2, t2) = −i
∑

j

ei(EN,0−EN,j)(t2−t1)〈Ψ0|n̂(x2)|N, j〉〈N, j|n̂(x1)|Ψ0〉 (4.32)

This expression is very similar to that of G<. The main difference is that instead of removal
energies this expression contains particle-number conserving excitations. Fourier transformation
of this quantity gives us the excitation spectrum of the system. Similar Lehmann representations
exist for the higher order response functions that will play a role when we propagate the Green
function in stronger extrenal fields.
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Chapter 5

The equations of motion

5.1 The self-energy

We now study the equation of motion for the Green function. Using the definition of operators in
the Heisenberg picture, and the Hamiltonian as given in Eq. (3.24), the equation of motion for the
field operators is

i∂t1ψ̂H(1) = [ψ̂H(1), ĤH(t1)]

= h(1)ψ̂H(1) +

∫

d2w(1, 2)ψ̂†
H(2)ψ̂H(2)ψ̂H(1) (5.1)

i∂t1ψ̂
†
H(1) = [ψ̂†

H(1), ĤH(t1)]

= −h(1)ψ̂†
H(1) −

∫

d2w(1, 2)ψ̂†
H(1)ψ̂†

H(2)ψ̂H(2) (5.2)

where w(1, 2) = δ(t1, t2)/|r1−r2| is the Coulomb interaction. The notation δ(t1, t2) again indicates
that the time-arguments are on the contour. In deriving these expression we used Eqs.(2.53) and
(2.54) together with Eq.(3.49). Let us now take the time derivative of the Green function:

i∂t1G(1, 2) = i∂t1θ(t1, t2)G
>(1, 2) + i∂t1θ(t2, t1)G

<(1, 2)

+θ(t1, t2)i∂t1G
>(1, 2) + θ(t2, t1)i∂t1G

<(1, 2)

= iδ(t1, t2)[G
>(1, 2) −G<(1, 2)]

−iθ(t1, t2)〈i∂t1ψ̂H(1)ψ̂†
H(2)〉 + iθ(t2, t1)〈ψ̂†

H(2)i∂t1ψ̂H(1)〉 (5.3)

For the first term in this expression we can use the anti-commutation relations at equal times

iδ(t1, t2)[G
>(1, 2) −G<(1, 2)] = δ(t1, t2)〈

{

ψ̂H(x1t1), ψ̂
†
H(x2, t1)

}

〉 = δ(1, 2) (5.4)

where δ(1, 2) = δ(x1−x2)δ(t1, t2). Using Eqs.(5.1) in the last two terms of Eq.(5.3) we then obtain

i∂t1G(1, 2) = δ(1, 2) + h(1)G(1, 2) (5.5)

− i

∫

d3w(1, 3)
[

θ(t1, t2)〈ψ̂†
H(3)ψ̂H(3)ψ̂H(1)ψ̂†

H(2)〉 − θ(t2, t1)〈ψ̂†
H(2)ψ̂†

H(3)ψ̂H(3)ψ̂H(1)〉
]
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Now in the last line of this equation the pair of operators ψ̂†
H(3)ψ̂H(3) = n̂H(3) is actually evaluated

at at t3 = t1 due to the presence of an equal-time delta function in w(1, 3). However, this pair of
operators is always situated to the left of ψ̂H(1) and this ordering can thus also be obtained from

lim
δ→0

〈TC [ψ̂H(1)ψ̂†
H(2)n̂H(3)]〉

∣

∣

∣

t3=t1+δ

= θ(t1, t2)〈n̂H(3)ψ̂H(1)ψ̂†
H(2)〉 − θ(t2, t1)〈ψ̂†

H(2)n̂H(3)ψ̂H(1)〉
∣

∣

∣

t3=t1
(5.6)

where t1 + δ means that the limit is taken from above on the contour. This equation also follows
directly from Eq.(4.2) by taking Ô(3) = n̂H(3). If we then replace w(1, 3) by w(1+, 3) where
1+ = x1, t1 + δ we can write Eq.(5.5) as

(i∂t1 − h(1))G(1, 2) = δ(1, 2) − i

∫

d3w(1+, 3)〈TC [ψ̂H(1)ψ̂†
H(2)n̂H(3)]〉 (5.7)

Using the definition of the two-particle Green function (4.8) we can also write

〈TC [ψ̂H(1)ψ̂†
H(2)n̂H(3)]〉 = G2(1, 3, 3

+, 2) (5.8)

We can therefore write the equation of motion as

[i∂t1 − h(1)]G(1, 2) = δ(1, 2) − i

∫

d3w(1+, 3)G2(1, 3, 3
+, 2). (5.9)

Similarly one has the adjoint equation

[−i∂t2 − h(2)]G(1, 2) = δ(1, 2) − i

∫

d3w(2+, 3)G2(1, 3, 3
+, 2). (5.10)

—————–
Exercise

Derive Eq.(5.10)
—————–
The problem is that the equation of motion for G depends on the two-particle Green function G2.
Instead of propagating the equation with some approximate form of G2, we introduce the electronic
self energy Σ, such that the term −iG2w is replaced with ΣG. We define the self-energy Σ and its
adjoint Σ̂ by the equations

∫

d2 Σ(1, 2)G(2, 1′) = −i
∫

d2w(1, 2)G2(1, 2, 2
+, 1′) (5.11)

∫

d2G(1, 2)Σ̂(2, 1′) = −i
∫

d2w(1′, 2)G2(1, 2, 2
+, 1′) (5.12)

It is not difficult to derive that Σ = Σ̂ for initial equilibrium conditions. To do this we first write
Eqs.(5.1) and (5.2) in the following form:

(i∂t1 − h(1))ψ̂H(1) = îH(1) (5.13)

(−i∂t1 − h(1))ψ̂†
H(1) = î†H(1) (5.14)

where we defined the operators

îH(1) =

∫

d2w(1, 2)ψ̂†
H(2)ψ̂H(2)ψ̂H(1) (5.15)

î†H(1) =

∫

d2w(1, 2)ψ̂†
H(1)ψ̂†

H(2)ψ̂H(2) (5.16)

29



These operators are readily seen to be each others adjoints. In terms of these operators the equations
of motion of the Green function become

(i∂t1 − h(1))G(1, 2) = δ(1, 2) − i〈TC [̂iH(1)ψ̂†
H(2)]〉 (5.17)

(−i∂t2 − h(2))G(1, 2) = δ(1, 2) − i〈TC [ψ̂H(1)̂i†H(2)]〉 (5.18)

where from the derivation it is clear that the operators îH and î†H must be regarded as fermionic
in the time-ordered product. From these equations we see immediately that

∫

d3 Σ(1, 3)G(3, 2) = −i〈TC [̂iH(1)ψ̂†
H(2)]〉 (5.19)

∫

d3G(1, 3)Σ̂(3, 2) = −i〈TC [ψ̂H(1)̂i†H(2)]〉 (5.20)

From the equation of motion of the Green function we see that for the left hand sides of Eqs.(5.19)
and (5.20) we can write

(−i∂t2 − h(2))

∫

d3 Σ(1, 3)G(3, 2) = Σ(1, 2) +

∫

d3 d4 Σ(1, 3)G(3, 4)Σ̂(4, 2) (5.21)

(i∂t1 − h(1))

∫

d3G(1, 3)Σ̂(3, 2) = Σ̂(1, 2) +

∫

d3 d4 Σ(1, 3)G(3, 4)Σ̂(4, 2) (5.22)

whereas for the right hand sides we obtain

−i(−i∂t2 − h(2))〈TC [̂iH(1)ψ̂†
H(2)]〉

= −∂t2θ(t1, t2)〈̂iH(1)ψ̂†
H(2)〉 + ∂t2θ(t2, t1)〈ψ̂†

H(2)̂iH(1)〉 − i〈TC [̂iH(1)̂i†H(2)]〉
= δ(t1, t2)〈

{

îH(1), ψ̂†
H(2)

}

〉 − i〈TC [̂iH(1)̂i†H(2)]〉 (5.23)

and

−i(i∂t1 − h(1))〈TC [ψ̂H(1)̂i†H(2)]〉
= ∂t1θ(t1, t2)〈ψ̂H(1)̂i†H(2)〉 − ∂t1θ(t2, t1)〈̂i†H(2)ψ̂H(1)〉 − i〈TC [̂iH(1)̂i†H(2)]〉
= δ(t1, t2)〈

{

ψ̂H(1), î†H(2)
}

〉 − i〈TC [̂iH(1)̂i†H(2)]〉 (5.24)

We have therefore obtained the relations

Σ(1, 2) +

∫

d3 d4 Σ(1, 3)G(3, 4)Σ̂(4, 2)

= δ(t1, t2)〈
{

îH(1), ψ̂†
H(2)

}

〉 − i〈TC [̂iH(1)̂i†H(2)]〉 (5.25)

Σ̂(1, 2) +

∫

d3 d4 Σ(1, 3)G(3, 4)Σ̂(4, 2)

= δ(t1, t2)〈
{

ψ̂H(1), î†H(2)
}

〉 − i〈TC [̂iH(1)̂i†H(2)]〉 (5.26)

Now it is readily seen by computation that for the equal time parts on the left hand sides of
Eqs.(5.25) and (5.26) we have

〈
{

îH(x1t1), ψ̂
†
H(x2t1)

}

〉 = 〈
{

ψ̂H(x1t1), î
†
H(x2t1)

}

〉 (5.27)
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and therefore Eqs.(5.25) and (5.26) immediately imply that

Σ(1, 2) = Σ̂(1, 2) (5.28)

We further see from Eq.(5.25) that Σ has the following structure

Σ(1, 2) = Σδ(1, 2) + θ(t1, t2)Σ
>(1, 2) + θ(t2, t1)Σ

<(1, 2) (5.29)

where the equal-time singular part of Σ is given by

Σδ(1, 2) = δ(t1, t2)〈
{

îH(x1t1), ψ̂
†
H(x2t1)

}

〉 (5.30)

This term is reaily worked out in more explicit form using the equal time anti-commutation relations
of the field operators
{

îH(x1t1), ψ̂
†
H(x2t1)

}

=

∫

dx3w(x1,x3)
(

ψ̂†
H(x3t1)ψ̂H(x3t1)ψ̂H(x1t1)ψ̂

†
H(x2t1) + ψ̂†

H(x2t1)ψ̂
†
H(x3t1)ψ̂H(x3t1)ψ̂H(x1t1)

)

= δ(x1 − x2)

∫

dx3w(x1,x3) ψ̂
†
H(x3t1)ψ̂H(x3t1) − w(x1,x3) ψ̂

†
H(x2t1)ψ̂H(x1t1) (5.31)

We therefore obtain

Σδ(1, 2) = δ(1, 2)

∫

dx3w(x1,x3) 〈ψ̂†
H(x3t1)ψ̂H(x3t1)〉 − δ(t1, t2)w(x1,x2)〈ψ̂†

H(x2t1)ψ̂H(x1t1)〉

= −iδ(1, 2)
∫

dx3w(x1,x3)G
<(x3t1,x3t1) + iδ(t1, t2)w(x1,x2)G

<(x1t1,x2t1) (5.32)

This expression will later be denoted as the Hartree-Fock form of the self-energy.
In this section we showed that Σ = Σ̂ and therefore the equations of motion can be written as

[i∂t1 − h(1)]G(1, 2) = δ(1, 2) +

∫

d3 Σ(1, 3)G(3, 2). (5.33)

[−i∂t2 − h(2)]G(1, 2) = δ(1, 2) +

∫

d3G(1, 3)Σ(3, 2). (5.34)

We see later that if we consider more general initial conditions that Σ is no longer equal to its adjoint
Σ̂. The next task is find more explicit forms of the self-energy. The self-energy is a functional of
the one-particle Green function, and as a consequence, Eqs. (5.33) and (5.34) constitute a set of
equations that should be solved to self-consistency once the functional dependence of Σ on G is
known. This is the topic of the next section.

5.2 Derivation of self-consistent equations

To generate a set of self-consistent equations we first note that from Eq.(3.48) it follows that

δG(1, 2)

δv(3)
= −i δ

δv(3)
〈Tc[ψ̂H(1)ψ̂†

H(2)]〉 = −〈TC [ψ̂H(1)ψ̂†
H(2)n̂H(3)]〉 + 〈n̂H(3)〉〈TC [ψ̂H(1)ψ̂†

H(2)]〉
(5.35)
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and we can therefore write

−i〈TC [ψ̂H(1)ψ̂†
H(2)n̂H(3)〉 = i

δG(1, 2)

δv(3)
+ 〈n̂H(3)〉G(1, 2) (5.36)

With this expression we can write the equations of motion Eqs.(5.9) and (5.10) as [6]
[

i∂t1 − h(1)
]

G(1, 1′) = δ(1, 1′)

+ i

∫

d2w(1+, 2)
δG(1, 1′)

δv(2)
+G(1, 1′)

∫

d2w(1, 2)〈n̂H(2)〉 (5.37)

[

− i∂t′
1
− h(1′)

]

G(1, 1′) = δ(1, 1′)

+ i

∫

d2w(1′+, 2)
δG(1, 1′)

δv(2)
+G(1, 1′)

∫

d2w(1′, 2)〈n̂H(2)〉 (5.38)

As a next step we will derive an expression for δG(1, 1′)/δv(2). To do this we differentiate the
equations of motion Eq.(5.33) and Eq.(5.34) with respect to v and obtain the equations:

(i∂t1 − h(1))
δG(1, 1′)

δv(2)
−
∫

d3 Σ(1, 3)
δG(3, 1)

δv(2)
= δ(1, 2)G(1, 1′) +

∫

d3
δΣ(1, 3)

δv(2)
G(3, 1′) (5.39)

(−i∂t′
1
− h(1′))

δG(1, 1′)

δv(2)
−
∫

d3
δG(1, 3)

δv(2)
Σ(3, 1′) = δ(1′, 2)G(1, 1′) +

∫

d3G(1, 3)
δΣ(3, 1′)

δv(2)
(5.40)

From the equation of motion of the Green function we can see that a general solution to these
equations is

δG(1, 1′)

δv(2)
= G(1, 2)G(2, 1′) +

∫

d3 d4G(1, 3)
δΣ(3, 4)

δv(2)
G(4, 1′) + C(1, 1′, 2) (5.41)

where C is a solution to the homogeneous equations

(i∂t1 − h(1))C(1, 1′, 2) −
∫

d3 Σ(1, 3)C(3, 1′, 2) = 0 (5.42)

(−i∂t′
1
− h(1′))C(1, 1′, 2) −

∫

d3C(1, 3, 2)Σ(3, 1′) = 0 (5.43)

————
Exercise

Check that the expression in Eq.(5.41) is a solution to Eqs.(5.39) and (5.40).
————-
To determine the solution uniquely we must use the boundary conditions. Since both terms on the
right hand side of Eq.(5.35) satisfy the Kubo-Martin-Schwinger boundary conditions see that

δG(x1, t0 − iβ, 1′)

δv(2)
= −δG(x1, t0, 1

′)

δv(2)
(5.44)

δG(1,x′
1, t0 − iβ)

δv(2)
= −δG(1,x′

1, t0)

δv(2)
(5.45)

It is readily seen from the boundary conditions on the Green function that the first two terms in
Eq.(5.41) satisfy the boundary conditions Eq.(5.44) and (5.45). Therefore also the function C must
satisfy these boundary conditions. This uniquely fixes C = 0 as the solution to Eqns.(5.42) and
(5.43). We thus have

δG(1, 1′)

δv(2)
= G(1, 2)G(2, 1′) +

∫

d3 d4G(1, 3)
δΣ(3, 4)

δv(2)
G(4, 1′) (5.46)
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From the structure of this equation is then natural to define the following so-called vertex function
Γ as

Γ(12; 3) = δ(1, 2)δ(2, 3) +
δΣ(1, 2)

δv(3)
(5.47)

such that we have
δG(1, 1′)

δv(2)
=

∫

d3 d4G(1, 3)G(4, 1′)Γ(34; 2) (5.48)

If we insert this equation into Eq.(5.37) we obtain

[

i∂t1 − h(1)
]

G(1, 1′) = δ(1, 1′)

+ i

∫

d2 d3 d4G(1, 3)w(1+, 2)Γ(34; 2)G(4, 1′) +G(1, 1′)

∫

d2w(1, 2)〈n̂H(2)〉

= δ(1, 1′) +

∫

d4 Σ(1, 4)G(4, 1′) (5.49)

We therefore see that we can write Σ as

Σ(1, 2) = i

∫

d3d4G(1, 3)w(1+, 4)Γ(32; 4) − iδ(1, 2)

∫

d3w(1, 3)G(3, 3+) (5.50)

where we used that 〈n̂H(3)〉 = −iG(3, 3+). This equation can used iteratively to generate expres-
sions for Σ in terms of the Green function. This becomes more clear when we insert into Eq.(5.50)
the explicit form of the vertex (5.47) :

Σ(1, 2) = iG(1, 2)w(1+, 2) − iδ(1, 2)

∫

d3w(1, 3)G(3, 3+)

+ i

∫

d3d4G(1, 3)w(1+, 4)
δΣ(3, 2)

δv(4)
(5.51)

The first line in this expression is defined as the Hartree-Fock self-energy

ΣHF[G,w](1, 2) = iG(1, 2)w(1+, 2) − iδ(1, 2)

∫

d3w(1, 3)G(3, 3+) (5.52)

The first iteration of Eq.(5.51) gives

Σ(1, 2) = ΣHF(1, 2) + i

∫

d3d4G(1, 3)w(1+, 4)
δΣHF(3, 2)

δv(4)

+ i2
∫

d3d4G(1, 3)w(1+, 4)
δ

δv(4)

∫

d5d6G(3, 5)w(3+, 6)
δΣ(5, 2)

δv(6)
(5.53)

We can now evaluate δΣHF/δv using Eq.(5.46):

δΣHF(3, 2)

δv(4)
= i

δG(3, 2)

δv(4)
w(3+, 2) − iδ(3, 2)

∫

d5w(3, 5)
δG(5, 5+)

δv(4)

= iG(3, 4)G(4, 2)w(3+, 2) − iδ(3, 2)

∫

d5w(3, 5)G(5, 4)G(4, 5+)

− iδ(3, 2)

∫

d5 d6 d7w(3, 5)G(5, 6)
δΣ(6, 7)

δv(4)
G(7, 5+)

+ iw(3+, 2)

∫

d5 d6 d7G(3, 6)
δΣ(6, 7)

δv(4)
G(7, 2) (5.54)
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Σ =

�
+ + +

Figure 5.1: Diagrammatic expression of Σ(2)

When we insert this expression back into Eq.(5.53) we obtain

Σ(1, 2) = Σ(2)(1, 2) − i2
∫

d4d6d7G(1, 2)w(1+, 4)w(2, 5)G(5, 6)
δΣ(6, 7)

δv(4)
G(7, 5+)

+ i2
∫

d3d4d6d7G(1, 3)w(1, 4+)w(3, 2+)G(3, 6)
δΣ(6, 7)

δv(4)
G(7, 2)

+ i2
∫

d3d4G(1, 3)w(1+, 4)
δ

δv(4)

∫

d5d6G(3, 5)w(3+, 6)
δΣ(5, 2)

δv(6)
(5.55)

where we defined Σ(2) as

Σ(2)[G,w](1, 2) = ΣHF(1, 2) + i2
∫

d3d4G(1, 3)w(1+, 4)G(3, 4)G(4, 2)w(3+, 2)

− i2
∫

d4d5G(1, 2)w(1+, 4)w(2, 5)G(5, 4)G(4, 5+) (5.56)

We see that Σ(2) for a given G and as functional of w is of second order in w. This term can be
represented diagrammatically. To do this we associate with every Green function G(1, 2) a directed
line running from 2 to 1 and with every interaction line w(1, 2) a wiggly line connecting point 1
and 2. This is illustrated in Fig. 5.1 for the expression given in Eq.(5.56). The remaining terms in
Eq.(5.55) that contain derivatives of Σ are of higher order in w. For instance a further iteration of
Eq.(5.55) produces new terms that are of third order in w. The main message is that we have found
a systematic way of expressing the self-energy Σ as a functional of G and w. The whole iterative
set of equations be written compactly by writing a coupled equation for the self-energy Σ and the
vertex Γ. If we regard Σ as a functional of the Green function Eq.(5.47) implies immediately that

Γ(12; 3) = δ(1, 2)δ(1, 3) +

∫

d4d5
δΣ(1, 2)

δG(4, 5)

δG(4, 5)

δv(3)

= δ(1, 2)δ(1, 3) +

∫

d4d5d6d7
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(67; 3) (5.57)

We have therefore obtained the following set of self-consistent equations

0 = [i∂t1 − h(1)]G(1, 1′) − δ(1, 1′) −
∫

d2 Σ(1, 2)G(2, 1′) (5.58)

0 =
[

−i∂t′
1
− h(1′)

]

G(1, 1′) − δ(1, 1′) −
∫

d2G(1, 2)Σ(2, 1′) (5.59)

Σ(1, 2) = i

∫

d3d4G(1, 3)w(1+, 4)Γ(32; 4) − iδ(1, 2)

∫

d3w(1, 3)G(3, 3+) (5.60)

Γ(12; 3) = δ(1, 2)δ(1, 3) +

∫

d4d5d6d7
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(67; 3) (5.61)
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These equations can now be iterated to obtain self-consistent equations for the Green function.
For instance, if we take the simplest approximation for the vertex, namely Γ(12; 3) = δ(1, 2)δ(1, 3),
and insert it into Eq.(5.60) we obtain the Hartree-Fock approximation to the self-energy ΣHF . By
inserting this expression into Eq.(5.61) we obtain a new approximation for the vertex from which
one can obtain a new self-energy. As one can readily convince oneself the time-local part (i.e.
proportional to δ(t1, t2) ) of Σ is only given by ΣHF , i.e. Σδ = ΣHF. It is therefore convenient to
single out the Hartree-Fock part of the self-energy, such that [2]

Σ(1, 2) = ΣHF(1, 2) + θ(t1, t2)Σ
>(1, 2) + θ(t2, t1)Σ

<(1, 2) (5.62)

From expression (5.52) we see that we can write

ΣHF(1, 2) = ΣHF(x1t1,x2t1)δ(t1, t2) (5.63)

where

ΣHF(x1, t1,x2t1) = iG<(x1t1,x2t1)w(x1,x2) − iδ(x1 − x2)

∫

dx3w(x1,x3)G
<(x3t1,x3t1) (5.64)

Some specific forms for the self-energy will be discussed later. Let us first discuss the form of the
equations of motion that one has to solve in any practical application.

5.3 The Kadanoff-Baym equations

Using Eq.(5.62) we transform the contour integration to obtain:

(i∂t1 − h(1))G≶(1, 2) = I
≶
1 (1, 2) (5.65)

(−i∂t2 − h(2))G≶(1, 2) = I
≶
2 (1, 2) (5.66)

(i∂t1 − h(1))Ge(1, 2) = Ie(1, 2) (5.67)

(−i∂t2 − h(2))Gd(1, 2) = Id(1, 2) (5.68)

(−∂τ1 − h(1))GM(1, 2) = iδ(τ1 − τ2) + IM(1, 2) (5.69)

(∂τ2 − h(2))GM(1, 2) = iδ(τ1 − τ2) + IM(1, 2) (5.70)

where we defined the collision terms

I
≶
1 = (ΣG)≶ = ΣR ·G≶ + Σ≶ ·GA + Σe ? Gd (5.71)

I
≶
2 = (GΣ)≶ = GR · Σ≶ +G≶ · ΣA +Ge ? Σd (5.72)

Ie = (ΣG)e = ΣR ·Ge + Σe ? GM (5.73)

Id = (GΣ)d = Gd · ΣA +GM ? Σd (5.74)

IM = (ΣG)M = ΣM ? GM (5.75)

The Eqs. (5.65) to (5.70) are known as the Kadanoff-Baym equations [7, 5, 8]. For a given ap-
proximation of Σ[G] these equations can solved by time-propagation. In practice the equations
are first solved for GM on the contour from t0 to t0 − iβ parallel to the imaginary axis using the
Kubo-Martin-Schwinger boundary conditions [9, 10, 11]. This amounts to a solution of the sta-
tionary equilibrium problem. In fact since the Green function on the vertical part of the contour
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corresponds to an equilibrium sitauation and only depends on τ = τ1− τ2 the Eqs.(5.69) and (5.70)
can be replaced by a single equation

(−∂τ − h(1))GM(x1,x2; τ) = iδ(τ) + IM(x1,x2, τ) (5.76)

where we defined
GM(x1,x2; τ1 − τ2) = GM(x1τ1,x2τ2) (5.77)

The functions such obtained can then be used as starting values for the real time propagation of
the functions G≶, Gd and Ge. The initial conditions for these functions are then given by

Ge(t0, τ) = GM(0, τ) (5.78)

Gd(τ, t0) = GM(τ, 0) (5.79)

G<(t0, t0) = GM(0, 0+) (5.80)

G>(t0, t0) = GM(0+, 0) (5.81)

—————
Exercise

Derive the form of the Kadanoff-Baym equations given in Eqns.(5.65) to Eqns.(5.69) from the equa-
tion of motion on the contour and check the initial conditions Eq.(5.78) to Eq.(5.81).
—————-

The solution of the equations of motion is further simplified by the relations

[G≶(1, 2)]∗ = −G≶(2, 1) (5.82)

G>(x1t,x2t) = −iδ(x1 − x2) +G<(x1t,x2t) (5.83)

This means that in the time propagation one can restrict oneselves to solving G>(1, 2) for t1 > t2
and G<(1, 2) for t2 ≤ t1.

————–
Exercise

Prove relations (5.82) and (5.83)
————–

Let now discuss some physical properties that are contained in these equations of motion. As an
example we write out Eq.(5.65) out in more detail. We then have

(i∂t1 − h(1))G<(1, 2) =

∫

dx3 ΣHF(x1t1,x3t1)G
<(x3t1, 2)

+

∫ t1

t0

d3 [Σ>(1, 3) − Σ<(1, 3)]G<(3, 2) −
∫ t2

t0

d3 Σ<(1, 3)[G>(3, 2) −G<(3, 2)]

− i

∫ β

0
d3Ge(1, 3)Σd(3, 2) (5.84)
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The Hartree-Fock term on the right hand side of the equation is a potential that is spatially nonlocal,
but local in time. Consequently it has no memory and does not lead to dissipation. The next to
terms on the other hand involve time-integrations over all previous times. The complex self-energy
kernels in these equations lead to dephasing and dissipative effects in the Green functions and lead
to a decay of the Green function far from the time-diagonal. The last term on the right hand side
is (apart from the Hartree-Fock term) the only term that remains for t1 = t2 = t0. It therefore
describes the initial correlations in the system.
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Chapter 6

Conserving approximations

6.1 Conservation laws and Φ-derivability

There are several general exact relations known for systems in time-dependent external fields. These
relations reduce in absence of the external field to the conservation laws for energy, momentum,
angular momentum and particle number. The main question is now whether these conservation
laws are also obeyed if we calculate the energy, momentum and angular momentum from the Green
function obtained within a certain approximation. Approximations that do conserve them will be
denoted as conserving approximations. The main question is then: how can we guarantee that a
given approximation to the self-energy gives a conserving approximation for the Green function.
Let us first discuss a number of conservation laws. If we know the Green function we can calculate
the density and the current density from

〈n̂(1)〉 = −iG(1, 1+) (6.1)

〈j(1)〉 = −i
{[∇1

2i
− ∇1′

2i
+ A(1)

]

G(1, 1′)

}

1′=1+

(6.2)

An important relation between the two quantities is provided by the continuity equation:

∂t1〈n̂(1)〉 + ∇ · 〈j(1)〉 = 0 (6.3)

This relation tells us that accumulation of charge in a certain region of space is related to current
flow into that region. The is certainly an important relation that one wants to have satisfied in the
analysis of charge transport processes. If we know the current density we can further calculate the
total momentum and angular momentum expectation values in the system from the equations

〈P(t1)〉 =

∫

dx1 〈j(1)〉 (6.4)

〈L(t1)〉 =

∫

dx1 r1 × 〈j(1)〉 (6.5)
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For these two quantities the following relations should be satisfied

∂t1〈P(t1)〉 = −
∫

dx1

[

〈n̂(1)〉E(1) + 〈j(1)〉 × B(1)
]

(6.6)

∂t1〈L(t1)〉 = −
∫

dx1

[

〈n̂(1)〉 r1 × E(1) + r1 × (〈j(1)〉 × B(1))
]

(6.7)

where E and B are the electric and magnetic fields calculated from

E(1) = ∇1v(1) − ∂t1A(1) (6.8)

B(1) = ∇1 × A(1) (6.9)

The equations (6.6) and (6.7) tell us that the change in momentum and angular momentum is equal
to the total force and total torque on the system. In the absence of external fields these equations
express momentum and angular momentum conservation. Since the right hand sides of Eq.(6.6)
and Eq.(6.7) can also directly be calculated from the density and the current and therefore from
the Green function, we may wonder whether they are satisfied for a given approximation to the
Green function. Finally we will consider the case of energy conservation. Let E(t1) = 〈Ĥ(t1)〉 be
the energy expectation value of the system, then we have

∂t1E(t1) = −
∫

dx1 〈j(1)〉 · E(1) (6.10)

This equation tels us that the energy change of the system is equal to the work done on the system.
Again we can ask whether this equation is satisfied for a given approximation to Green function. Let
us first explain how the energy is calculated from the Green function. First of all, the one-particle
energy is simply calculated from

〈h(1)〉 = −i
∫

dx1h(1
′)G(1, 1′)

∣

∣

∣

1′=1+
= −i

∫

dx1h(x1, t1)G
<(x1t1,x

′
1t1)

∣

∣

∣

x
′

1
=x1

(6.11)

To calculate the expectation value of the intercation energy we simply use Eq.(5.1) to obtain

i∂t1G
<(1, 2) = h(1)G<(1, 2) + i

∫

d3w(1, 3)〈ψ̂†
H(2)ψ̂†

H(3)ψ̂H(3)ψ̂H(1)〉 (6.12)

and therefore

(i∂t1 − h(1))G<(1, 2)
∣

∣

∣

t2=t1
=

∫

dx3w(x1,x3)〈ψ̂†
H(x2t1)ψ̂

†
H(x3t1)ψ̂H(x3t1)ψ̂H(x1t1)〉 = 2i〈Ŵ (t1)〉

(6.13)
We the obtain for the total energy the expression

E(t1) = 〈h(t1)〉 + 〈Ŵ (t1)〉 = − i

2

∫

dx1 (i∂t1 + h(x1, t1))G
<(x1t1,x

′
1t1)

∣

∣

∣

x
′

1
=x1

(6.14)

The question is now whether with this energy calculated form an approximate Green function and
with the current density calculated from the same Green function relation (6.10) is satisfied. These
questions were answered by Baym [12] in a famous paper. The main conclusion of the paper is as
follows : If the self-energy Σ is obtained from an underlying functional Φ[G], according to

Σ(1, 2) =
δΦ

δG(2, 1)
, (6.15)
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Figure 6.1: Some of the low-order Φ diagrams, and some of the self-energy diagrams obtained from
Σ = δΦ/δG. The prefactor of a Φ-diagram is nΣ/2n where nΣ is the number of topologically
different Σ-diagrams that can be generated from it and n is the number of interaction lines.

then solving the Kadanoff-Baym equations with this approximation to the self-energy will lead to
a Green function G that satisfies exactly the relations (6.3), (6.6), (6.7) and (6.10). The question
is now how the functional Φ can be constructed. Such a functional Φ can be constructed, as first
shown by Luttinger and Ward [13], by summing over irreducible self-energy diagrams closed with
an additional Green function line and multiplied by appropriate numerical factors,

Φ[G] =
∑

n,k

1

2n

∫

d1d2 Σ
(n)
k (1, 2)G(2, 1+) =

∑

n,k

1

2n
tr
[

Σ
(n)
k G

]

. (6.16)

The term n indicates the number of interaction lines and k labels Σ-diagrams. The trace tr
indicates an integration over all variables (in contrast to the trace Tr that denotes a summation
over a complete set of states in the Hilbert space). Some of the low-order diagrams are shown in
Fig. 6.1, together with some of the corresponding self-energy diagrams.

6.2 Approximate conserving schemes

6.2.1 Time-dependent Hartree-Fock approximation

We now consider some approximate conserving schemes. One of the simplest approximations we can
take is the Hartree-Fock approximation for Σ. For this approximation the Φ-diagrams correspond
to the first two in Fig.6.1 and the self-energy is explicitly given by Eq.(5.52) or in more detail in
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Eqs.(5.63) and (5.64) In that case the equations of motion for G≶ are given by

(i∂t1 − h(1))G≶(1, 2) =

∫

dx3 ΣHF(1,x3t1)G
≶(x3t1, 2) (6.17)

(−i∂t2 − h(2))G≶(1, 2) =

∫

dx3G
≶(1,x3t2)Σ

HF(x3t2, 2) (6.18)

To solve these equations we first introduce the following orbitals

(i∂t1 − h(1))ϕi(1) =

∫

dx3 ΣHF(1,x3t1)ϕi(x3t1) (6.19)

(−i∂t2 − h(2))ϕ̄i(2) =

∫

dx3 ϕ̄i(x3t2)Σ
HF(x3t2, 2) (6.20)

From the basic property (5.82) and the explicit form of ΣHF of Eq.(5.64) it follows that ΣHF is
hermitian and therefore ϕ̄i = ϕ∗

i (this is not true anymore on the vertical part of the contour). We
now make the following Ansatz for G< :

G<(1, 2) = i
∑

j

njϕj(1)ϕ
∗
j (2) (6.21)

where nj are constants to be determined. It is clear that this Ansatz for G< satifies Eqs.(6.17) and
(6.18) but we still need to check the boundary conditions. In order to satisfy Eq.(5.83) we make
for G> the Ansatz

G>(1, 2) = −i
∑

j

(1 − nj)ϕj(1)ϕ
∗
j (2) (6.22)

such that

G>(1, 2)
∣

∣

∣

t1=t2
−G<(1, 2)

∣

∣

∣

t1=t2
= −i

∑

j

ϕj(1)ϕ
∗
j (2)

∣

∣

∣

t1=t2
= −iδ(x1 − x2) (6.23)

We must further specify the initial conditions. This can be done with help of Eqs.(5.80) and (5.81).
We therefore first have to solve for the Green function GM on the imaginary part of the contour
where t = −iτ as given in Eq.(4.13).

GM(x1τ1,x2τ2) = θ(τ1 − τ2)G
>(x1,−iτ1,x2,−iτ2) + θ(τ2 − τ1)G

<(x1,−iτ1,x2,−iτ2) (6.24)

If we define χi(x1τ1) = ϕi(x1,−iτ1) and χ̄i(x1τ1) = ϕ∗
i (x1,−iτ1) then we have

G>(x1,−iτ1,x2,−iτ2) = −i
∑

j

(1 − nj)χj(x1τ1)χ̄j(x2τ2) (6.25)

G<(x1,−iτ1,x2,−iτ2) = i
∑

j

njχj(x1τ1)χ̄j(x2τ2) (6.26)

where χi and χ̄i satisfy the equations

(−∂τ1 − h(x1))χi(x1τ1) =

∫

dx3 ΣHF(x1τ1,x3τ1)χi(x3τ1) (6.27)

(∂τ2 − h(x2))χ̄i(x2τ2) =

∫

dx3 χ̄i(x3τ2)Σ
HF(x3τ2,x2τ2) (6.28)
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With these equations it is readily seen that the equations of motion for GM of (5.70) and (5.76)
are indeed satisfied. We therefore only have to specify the boundary condition. On the vertical
contour the system is in equilibrium and therefore ΣHF(x1τ,x2τ) does not depend on τ . For the
functions χi and χ̄i we can therefore make the Ansatz

χi(x1τ1) = ψi(x1)e
−εiτ1 (6.29)

χ̄i(x1τ1) = ψ∗
i (x1)e

εiτ1 (6.30)

If we insert these forms in Eq.(6.27) and (6.28) we obtain

(εi − h(x1))ψi(x1) =

∫

dx3 ΣHF(x1τ1,x3τ1)ψi(x3) (6.31)

(εi − h(x2))ψ
∗
i (x2τ2) =

∫

dx3 ψ
∗
i (x3)Σ

HF(x3τ2,x2τ2) (6.32)

and we obtain

G>(x1,−iτ1,x2,−iτ2) = −i
∑

j

(1 − nj)e
−εi(τ1−τ2)ψj(x1)ψ

∗
j (x2) (6.33)

G<(x1,−iτ1,x2,−iτ2) = i
∑

j

nje
−εi(τ1−τ2)ψj(x1)ψ

∗
j (x2) (6.34)

From these equations and Eq.(5.64) we see indeed that on the imaginary part of the contour the
self-energy is time-independent and given by

ΣHF(x1,x2) = −w(x1,x2)
∑

j

njψi(x1)ψ
∗
i (x2) + δ(x1 − x2)

∫

dx3w(x1,x3)
∑

j

njψi(x3)ψ
∗
i (x3)

(6.35)
Let us now determine the coefficients nj from the Kubo-Martin-Schwinger boundary conditions.
From condition Eq.(4.18) and the explict forms (6.33) and (6.34) we see that we must have

G<(x1, 0,x2,−iτ2) = i
∑

j

nje
εiτ2ψj(x1)ψ

∗
j (x2)

= i
∑

j

(1 − nj)e
−εi(β−τ2)ψj(x1)ψ

∗
j (x2) = −G>(x1,−iβ,x2, τ2) (6.36)

We thus obtain the relation
nj = (1 − nj)e

−εjβ (6.37)

this equation is easily solve to give

nj =
1

eβεj + 1
(6.38)

which is the famous Fermi-Dirac distribution. We have now also completely determined the initial
conditions of the orbitals ϕ, we have ϕi(x0) = ψi(x) where ψi solves Eq.(6.31) with self-energy
(6.35). Now that we have completely determined G≶ we can also explicitly evaluate the self-energy
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of Eq.(5.64). The results are summarized below:

G<(1, 2) = i
∑

j

njϕj(1)ϕ
∗
j (2) (6.39)

G>(1, 2) = −i
∑

j

(1 − nj)ϕj(1)ϕ
∗
j (2) (6.40)

(i∂t1 − h(1))ϕi(1) =

∫

dx3 ΣHF(1,x3t1)ϕi(x3t1) (6.41)

ΣHF(x1t1,x2t1) = −w(x1,x2)
∑

j

njϕi(x1t1)ϕ
∗
i (x2t1)

+ δ(x1 − x2)

∫

dx3w(x1,x3)
∑

j

njϕj(x3t1)ϕ
∗
j (x3t1) (6.42)

These equations are just the time-dependent Hartree-Fock (TDHF) equations. If we choose the
chemical potential µ between the highest occupied and lowest unoccupied level of the stationar
Hartree-Fock equations and take the zero temperature limit we find that nj becomes equal to one
for the occupied states and zero for the unoccupied states.
It is now also interesting to see what the time-dependent Hartree-Fock approximation will give
for the density response function. From Eq.(5.48) we see that the first order change in the Green
function due to a change in the external field is given by

δG(1, 1′) =

∫

d3d4G(1, 3)G(4, 1′)Γ(34; 2)δv(2) (6.43)

and therefore the density reponse is given by

δn(1) = −iG(1, 1+) = −i
∫

d3d4G(1, 3)G(4, 1)Γ(34; 2)δv(2) =

∫

d2χ(1, 2)δv(2) (6.44)

and the density response function has the expression

χ(1, 2) = −i
∫

d3d4G(1, 3)G(4, 1)Γ(34; 2) (6.45)

The density response function corresponding to TDHF is then obtained by inserting the vertex
function Γ that belongs to TDHF. This function is then the solution of Eq.(5.61) where we need to
insert δΣHF(1, 2)/δG(4, 5) for the kernel. We have

δΣHF(1, 2)

δG(4, 5)
= iw(1+, 2)δ(1, 4)δ(2, 5) − iδ(1, 2)δ(4, 5+)w(1, 4) (6.46)

and therefore from Eq.(5.61) we obtain

Γ(12; 3) = δ(1, 2)δ(1, 3) + iw(1, 2)

∫

d6d7G(1, 6)G(7, 2)Γ(67; 3)

−iδ(1, 2)
∫

d5d6d7w(1, 5)G(5, 6)G(7, 5)Γ(67; 3) (6.47)

This gives indeed the well-known ’ladder and bubbles’ series for the TDHF response function.
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6.2.2 Second Born approximation

The level conserving approximation contians the second order diagrams, corresponding to the first
four Φ-diagrams of Fig.6.1 This corresponds to the so-called second Born approximation. Let the
second order diagrams be denoted by ΣB then there explicit form is given by the last two terms of
Eq.(5.56), i.e.

Σ(1, 2) = ΣHF(1, 2) + ΣB(1, 2) (6.48)

ΣB(1, 2) = i2
∫

d3d4G(1, 3)w(1+, 4)G(3, 4)G(4, 2)w(3+, 2)

− i2
∫

d3d4G(1, 2)w(1+, 3)w(2, 4)G(4, 3)G(3, 4+) (6.49)

Because of the time delta functions contained in w(1.2) we can write ΣB as

ΣB(1, 2) = i2
∫

dx3dx4G(x1t1,x3t2)w(x1,x4)G(x3t2,x4t1)G(x4t1,x2t2)w(x3,x2)

− i2
∫

dx3dx4G(x1t1,x2t2)w(x1,x3)w(x2,x4)G(x4t2,x3t1)G(x3t1,x4t2) (6.50)

We see that these expressions do not involve and time integrations. Therefore it is straightforward
to find the various Σx-components of this expression where for x we have >,<, d, e,M. We have

ΣB,≶(1, 2) = i2
∫

dx3dx4G
≶(x1t1,x3t2)w(x1,x4)G

≷(x3t2,x4t1)G
≶(x4t1,x2t2)w(x3,x2)

− i2
∫

dx3dx4G
≶(x1t1,x2t2)w(x1,x3)w(x2,x4)G

≷(x4t2,x3t1)G
≶(x3t1,x4t2) (6.51)

ΣB,e(1, 2) = i2
∫

dx3dx4G
e(x1t1,x3τ2)w(x1,x4)G

d(x3τ2,x4t1)G
e(x4t1,x2τ2)w(x3,x2)

− i2
∫

dx3dx4G
e(x1t1,x2τ2)w(x1,x3)w(x2,x4)G

d(x4τ2,x3t1)G
e(x3t1,x4τ2) (6.52)

ΣB,d(1, 2) = i2
∫

dx3dx4G
d(x1τ1,x3t2)w(x1,x4)G

e(x3t2,x4τ1)G
d(x4τ1,x2t2)w(x3,x2)

− i2
∫

dx3dx4G
d(x1τ1,x2t2)w(x1,x3)w(x2,x4)G

e(x4t2,x3τ1)G
d(x3τ1,x4t2) (6.53)

ΣB,M(1, 2) = i2
∫

dx3dx4G
M(x1τ1,x3τ2)w(x1,x4)G

M(x3τ2,x4τ1)G
M(x4τ1,x2τ2)w(x3,x2)

− i2
∫

dx3dx4G
M(x1τ1,x2τ2)w(x1,x3)w(x2,x4)G

M(x4τ2,x3τ1)G
M(x3τ1,x4τ2) (6.54)

With these expressions and the Kadanoff-Baym equations the problem is completely defined.

—————–
Exercise

Suppose we calculate the first order density change by propagation of the Kadanoff-Baym equations
within the second Born approximation. What would be the diagrammatic structure of the reponse
function that we obtain in this way ?
——————
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6.3 Applications

In this section we will illustrate the methods discussed sofar with some results. When one does
actual calculations the Green functions are often expressed in a basis, i.e. one writes

G(x1t1,x2t2) =
∑

i,j

ϕi(x1)ϕ
∗
j (x2)Gij(t1, t2) (6.55)

where ϕi represents a suitable chosen basis such as Hartree-Fock molecular orbitals. The coefficients
Gij are in fact the Green functions with respect the annihilation and creation operators âi and â†i
with respect to this basis

Gij(t1, t2) = −i〈TC [âi,H(t1)â
†
i,H(t2)]〉 (6.56)

This means that an equation like (5.84) attains the form

(i∂t1 − h(t1))G
<(t1, t2) = ΣHF(t1) · G<(t1, t2)

+

∫ t1

t0

dt3 [Σ>(t1, t3) − Σ<(t1, t3)] · G<(t3, t2) −
∫ t2

t0

dt3 Σ<(t1, t3) · [G>(t3, t2) − G<(t3, t2)]

− i

∫ β

0
dτ3 Ge(t1, τ3)Σ

d(τ3, t2) (6.57)

where all be bold-faced symbols now represent matrices and the symbol ” · ” a matrix product.
As a first application we consider a laser-excited quantum well of GaAs [14] where we only take the
valence and conduction bands as basis functions. For this case the Kadanoff-Baym equations can
be solved within the second Born approximation. The laser field is taken to be a 50 fs laser pulse
with its maximum peak intensity at t = 0. In Figs.(6.2) and (6.3) the imaginary parts of G<

cc and
G<

vv are displayed (both taken at the top of the valence band, i.e. in the state k = 0). As follows
from Eq.(5.82) these quantities are indeed symmetric in t1 and t2. In general one has

ImG
≶
ij(t1, t2) = ImG

≶
ji(t2, t1) (6.58)

Let us see what this quantity represents. Now since

G<
ij(t1, t2) = i〈â†j,H(t2)âi,H(t1)]〉 (6.59)

it follows that
ImGii(t1, t1) = 〈â†i,H(t1)âi,H(t1)〉 = ni(t1) (6.60)

can be interpreted as the occupation number of the state i. This is indeed consistent with figures 6.2
and 6.3. One sees that due to the laser pulse the condition band gets occupied (the time diagonal
in Fig. 6.2) whereas the valence band gets depleted (the time diagonal in Fig. 6.3). One further sees
that the functions decay away from the time-diagonal. This is due to to the memory terms in the
Kadanoff-Baym equations, i.e. the second and the third term on the right hand side of Eq.(6.57).
The decay would be absent if we would only take into account the Hartree-Fock term.
As a next application we solved the Kadanoff-Baym equations within the second Born approxima-
tion for a hydrogen molecule. The results are very recent and therefore we only plot in Fig. 6.4
the function ImG<

σgσg
(t1, t2) for a field free propagation without a laser pulse excitation. We see

a similar picture as for the two-band GaAs calculations. The function oscillates away from the
diagonal with a frequency that is close to the ionization energy (as it should).
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Figure 6.2: Conduction band part ImG<
cc(t1, t2). A 50fs laser pulse is applied to GaAs which has

it peak strenght at t = 0.The time-diagonal gives the occupation number of the conduction band.
The decay away from the time diagonal is due to electron correlations.

Figure 6.3: Valence band part ImG<
vv(t1, t2). A 50fs laser pulse is applied to GaAs which has it

peak strenght at t = 0.The time-diagonal gives the occupation number of the valence band, it is
clearly seen that the laser excitation leads to depletion of the valence band. The decay away from
the time diagonal is due to electron correlations.
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Figure 6.4: ImGσgσg(t1, t2) for the H2 molecule obtained from field free propagation of the Kadanoff-
Baym equations within the second Born approximation
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Chapter 7

Outlook

In these notes we have given an introduction to the nonequilibrium Green function method, starting
from basic ideas based on the time contour to the final derivation of the Kadanoff-Baym equations
which are the ones that need to be solved in practical applications. Due to the limited space
necessarily many things have been left out. Many things can still be said about the properties
of the spectral functions that can be calculated from the nonequilibrium Green function method
and which are related to other exact identities known as the Ward identities. Also the topic of
more general initial states than the equilibrium state has been left out. The properties of the
Φ-functional have only been briefly touched and other conserving schemes such as the GW-method
and the T-matrix approximation have not been discussed at all.
Nevertheless we believe that the background presented here will provide the reader with enough
information to study the wide literature on transport throught single molecules, as well as many
other applications of nonequilibrium Green function theory. Especially with the developments in
single molecule conduction the interest in the nonequilibrium Green function method has been
growing steadily and is likely to do so in the near future.
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